Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35326235

RESUMEN

Oxidative stress is associated with a myriad of diseases including pregnancy pathologies with long-term cardiovascular repercussions for both the mother and baby. Aberrant redox signalling coupled with deficient antioxidant defence leads to chronic molecular impairment. Abnormal placentation has been considered the primary source for reactive species; however, placental dysfunction has been deemed secondary to maternal cardiovascular maladaptation in pregnancy. While various therapeutic interventions, aimed at combating deregulated oxidative stress during pregnancy have shown promise in experimental models, they often result as inconclusive or detrimental in clinical trials, warranting the need for further research to identify candidates. The strengths and limitations of current experimental methods in redox research are discussed. Assessment of redox status and oxidative stress in experimental models and in clinical practice remains challenging; the state-of-the-art of computational models in this field is presented in this review, comparing static and dynamic models which provide functional information such as protein-protein interactions, as well as the impact of changes in molecular species on the redox-status of the system, respectively. Enhanced knowledge of redox biology in during pregnancy through computational modelling such as generation of Systems Biology Markup Language model which integrates existing models to a larger network in the context of placenta physiology.

2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34465617

RESUMEN

Genomic instability, the unresolved accumulation of DNA variants, is hypothesized as one of the contributors to the natural aging process. We assessed the frequency of unresolved DNA damage reaching the transcriptome of the murine myocardium during the course of natural aging and in hearts from four distinct mouse models of premature aging with established aging-related cardiac dysfunctions. RNA sequencing and variant calling based on total RNA sequencing was compared between hearts from naturally aging mice, mice with cardiomyocyte-specific deficiency of Ercc1, a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity, Tert-deficient mice with reduced telomere length, and a mouse model of human Hutchinson-Gilford progeria syndrome (HGPS). Our results demonstrate that no enrichment in variants is evident in the naturally aging murine hearts until 2 y of age from the HGPS mouse model or mice with reduced telomere lengths. In contrast, a dramatic accumulation of variants was evident in Ercc1 cardiomyocyte-specific knockout mice with deficient DNA repair machinery, in mice with reduced mitochondrial antioxidant capacity, and in the intestine, liver, and lung of naturally aging mice. Our data demonstrate that genomic instability does not evidently contribute to naturally aging of the mouse heart in contrast to other organs and support the contention that the endogenous DNA repair machinery is remarkably active to maintain genomic integrity in cardiac cells throughout life.


Asunto(s)
Envejecimiento Prematuro/genética , Senescencia Celular/genética , Inestabilidad Genómica/genética , Envejecimiento/genética , Animales , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Endonucleasas/genética , Endonucleasas/metabolismo , Femenino , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Miocardio/metabolismo
3.
Thromb Haemost ; 121(9): 1169-1180, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33592630

RESUMEN

Previous genome-wide association studies (GWASs) have established several susceptibility genes for venous thromboembolism (VTE) and suggested many others. However, a large proportion of the genetic variance in VTE remains unexplained. Here, we report genome-wide single- and multimarker as well as gene-level associations with VTE in 964 cases and 899 healthy controls of European ancestry. We report 19 loci at the genome-wide level of association (p ≤ 5 × 10-8). Our results add to the strong support for the association of genetic variants in F5, NME7, ABO, and FGA with VTE, and identify several loci that have not been previously associated with VTE. Altogether, our novel findings suggest that 20 susceptibility genes for VTE were newly discovered by our study. These genes may impact the production and prothrombotic functions of platelets, endothelial cells, and white and red blood cells. Moreover, the majority of these genes have been previously associated with cardiovascular diseases and/or risk factors for VTE. Future studies are warranted to validate our findings and to investigate the shared genetic architecture with susceptibility factors for other cardiovascular diseases impacting VTE risk.


Asunto(s)
Sitios Genéticos , Polimorfismo de Nucleótido Simple , Tromboembolia Venosa/genética , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Haplotipos , Herencia , Humanos , Masculino , Persona de Mediana Edad , Linaje , Medición de Riesgo , Factores de Riesgo , Tromboembolia Venosa/diagnóstico , Adulto Joven
4.
Sci Rep ; 10(1): 8136, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424227

RESUMEN

We investigated the transcriptomic landscape of the murine myocardium along the course of natural aging and in three distinct mouse models of premature aging with established aging-related cardiac dysfunction. Genome-wide total RNA-seq was performed and the expression patterns of protein-coding genes and non-coding RNAs were compared between hearts from naturally aging mice, mice with cardiac-specific deficiency of a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity and mice with reduced telomere length. Our results demonstrate that no dramatic changes are evident in the transcriptomes of naturally senescent murine hearts until two years of age, in contrast to the transcriptome of accelerated aged mice. Additionally, these mice displayed model-specific alterations of the expression levels of protein-coding and non-coding genes with hardly any overlap with age-related signatures. Our data demonstrate very limited similarities between the transcriptomes of all our murine aging models and question their reliability to study human cardiovascular senescence.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Proteínas/genética , Envejecimiento/metabolismo , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/fisiopatología , Animales , Femenino , Humanos , Ictiosis Lamelar/genética , Ictiosis Lamelar/metabolismo , Ictiosis Lamelar/fisiopatología , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas/metabolismo , Telómero/genética , Telómero/metabolismo , Acortamiento del Telómero , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...