Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296365

RESUMEN

Leucojum aestivum is a medicinal plant belonging to the Amaryllidaceae family well known as a producer of alkaloids such as galanthamine and lycorine. However, the endophytic microbes that colonize different plant tissues without causing any damage have not been reported in this plant. Here, we explored the different endophytic bacterial communities isolated from different surface disinfected tissues of L. aestivum 'Gravety giant' and screened bacterial isolates producing alkaloids and their potential use as biocontrol agent against wheat pathogens. For that purpose, endophytic bacteria were isolated from bulbs, roots and shoots of L. aestivum. After taxonomical characterization, these microorganisms were screened for their ability to produce alkaloids using high-performance thin-layer chromatography (HPTLC) and untargeted liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) strategies. We isolated 138 bacteria belonging to four phyla and 42 genera, mainly from roots and shoots. The most abundant genera were Rahnella in shoot, Patulibacter in bulb and Bacillus in roots. Among the different bacterial isolates, the methanolic extracts of Luteibacter rhizovicinus (LaBFB3301) and Commamonas denitrificans (LaBFS2103) slightly delayed the growth of F. graminearum colonies in in vitro dual tests against F. graminearum and M. nivale strains with 15.5% and 19.9% inhibition rates, respectively. These isolates are able to produce an indolic alkaloid tryptophol (C10H11NO, [M + H]+ 162.0913). These endophytic bacteria might be investigated to characterize the plant protection effect and the plant growth promotion effect.

2.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293278

RESUMEN

Hop (Humulus lupulus L.) is a plant used as an ingredient in beer or employed for its anti-inflammatory properties. The cultivation of hops is currently dedicated to the brewing industry, where mainly female flowers are used, whereas aerial parts, such as leaves, are considered coproducts. Osteoarthritis is the most common musculoskeletal disease associated with low-grade cartilage inflammation. Liposomes have been shown to be promising systems for drug delivery to cartilage cells, called chondrocytes. The aim of our work was to vectorize hop extract valorized from coproducts as a therapeutic agent to alleviate inflammation in human chondrocytes in vitro. Liquid chromatography allowed the identification of oxidized bitter acids in a methanolic extract obtained from the leaves of Cascade hops. The extract was encapsulated in rapeseed lecithin nanoliposomes, and the physicochemical properties of empty or loaded nanoliposomes exhibited no difference. Increasing concentrations of the hop extract alone, empty nanoliposomes, and loaded nanoliposomes were tested on human chondrocytes to assess biocompatibility. The appropriate conditions were applied to chondrocytes stimulated with interleukin-1ß to evaluate their effect on inflammation. The results reveal that encapsulation potentiates the hop extract anti-inflammatory effect and that it might be able to improve joint inflammation in osteoarthritis. Furthermore, these results also show that a "zero waste" chain is something that can be achieved in hop cultivation.


Asunto(s)
Brassica napus , Brassica rapa , Humulus , Osteoartritis , Humanos , Humulus/química , Lecitinas , Interleucina-1beta , Condrocitos , Liposomas , Extractos Vegetales/química , Inflamación/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico
3.
Microorganisms ; 10(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35208667

RESUMEN

The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species.

4.
New Phytol ; 231(5): 1923-1939, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33978969

RESUMEN

Furanocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae). Transcriptomic and metabolomic approaches led to the identification of CYP76F112, a cytochrome P450 catalyzing an original reaction. CYP76F112 emergence was inquired using phylogenetics combined with in silico modeling and site-directed mutagenesis. CYP76F112 was found to convert demethylsuberosin into marmesin with a very high affinity. This atypical cyclization reaction represents a key step within the polyphenol biosynthesis pathway. CYP76F112 evolutionary patterns suggests that the marmesin synthase activity appeared recently in the Moraceae family, through a lineage-specific expansion and diversification. The characterization of CYP76F112 as the first known marmesin synthase opens new prospects for the use of the furanocoumarin pathway. It also supports the multiple acquisition of furanocoumarin in angiosperms by convergent evolution, and opens new perspectives regarding the ability of cytochromes P450 to evolve new functions related to plant adaptation to their environment.


Asunto(s)
Ficus , Furocumarinas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Filogenia
5.
Molecules ; 26(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806877

RESUMEN

Coumarins are phytochemicals occurring in the plant kingdom, which biosynthesis is induced under various stress factors. They belong to the wide class of specialized metabolites well known for their beneficial properties. Due to their high and wide biological activities, coumarins are important not only for the survival of plants in changing environmental conditions, but are of great importance in the pharmaceutical industry and are an active source for drug development. The identification of coumarins from natural sources has been reported for different plant species including a model plant Arabidopsis thaliana. In our previous work, we demonstrated a presence of naturally occurring intraspecies variation in the concentrations of scopoletin and its glycoside, scopolin, the major coumarins accumulating in Arabidopsis roots. Here, we expanded this work by examining a larger group of 28 Arabidopsis natural populations (called accessions) and by extracting and analysing coumarins from two different types of tissues-roots and leaves. In the current work, by quantifying the coumarin content in plant extracts with ultra-high-performance liquid chromatography coupled with a mass spectrometry analysis (UHPLC-MS), we detected a significant natural variation in the content of simple coumarins like scopoletin, umbelliferone and esculetin together with their glycosides: scopolin, skimmin and esculin, respectively. Increasing our knowledge of coumarin accumulation in Arabidopsis natural populations, might be beneficial for the future discovery of physiological mechanisms of action of various alleles involved in their biosynthesis. A better understanding of biosynthetic pathways of biologically active compounds is the prerequisite step in undertaking a metabolic engineering research.


Asunto(s)
Arabidopsis/metabolismo , Cumarinas/análisis , Espectrometría de Masas , Raíces de Plantas/metabolismo , Cromatografía Líquida de Alta Presión , Cumarinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33883279

RESUMEN

Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.


Asunto(s)
Angelica/genética , Citrus paradisi/genética , Evolución Molecular , Furocumarinas/biosíntesis , Proteínas de Plantas/genética , Prenilación , Angelica/metabolismo , Citrus paradisi/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578992

RESUMEN

In this study, endophytic bacteria belonging to the Bacillus genus were isolated from in vitro bulblets of Leucojum aestivum and their ability to produce Amaryllidaceae alkaloids was studied. Proton Nuclear Magnetic Resonance (1H NMR)-based metabolomics combined with multivariate data analysis was chosen to compare the metabolism of this plant (in vivo bulbs, in vitro bulblets) with those of the endophytic bacteria community. Primary metabolites were quantified by quantitative 1H NMR (qNMR) method. The results showed that tyrosine, one precursor of the Amaryllidaceae alkaloid biosynthesis pathway, was higher in endophytic extract compared to plant extract. In total, 22 compounds were identified including five molecules common to plant and endophyte extracts (tyrosine, isoleucine, valine, fatty acids and tyramine). In addition, endophytic extracts were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) for the identification of compounds in very low concentrations. Five Amaryllidaceae alkaloids were detected in the extracts of endophytic bacteria. Lycorine, previously detected by 1H NMR, was confirmed with LC-MS analysis. Tazettine, pseudolycorine, acetylpseudolycorine, 1,2-dihydro-chlidanthine were also identified by LC-MS using the positive ionization mode or by GC-MS. In addition, 11 primary metabolites were identified in the endophytic extracts such as tyramine, which was obtained by decarboxylation of tyrosine. Thus, Bacillus sp. isolated from L. aestivum bulblets synthesized some primary and specialized metabolites in common with the L.aestivum plant. These endophytic bacteria are an interesting new approach for producing the Amaryllidaceae alkaloid such as lycorine.


Asunto(s)
Alcaloides de Amaryllidaceae/metabolismo , Amaryllidaceae/microbiología , Bacillus/metabolismo , Endófitos/metabolismo , Alcaloides de Amaryllidaceae/análisis , Bacillus/química , Bacillus/aislamiento & purificación , Cromatografía Liquida , Endófitos/química , Endófitos/aislamiento & purificación , Microbiología Industrial/métodos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica
8.
Microbiol Res ; 243: 126650, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33302220

RESUMEN

Given the current trend towards reducing the use of chemical controls in agriculture, microbial resources such as plant endophytes are being intensively investigated for traits that are conducive to plant protection. Among the various important target pathogens, Fusarium graminearum is a fungal pathogen of cereal crops that is responsible for severe yield losses and mycotoxin contamination in grains. In the present study, we investigated the bacterial endophytic communities from vetiver (Chrysopogon zizanioides (L.) Roberty) roots originating from 5 different geographic locations across Europe and Africa. This study relies on a global 16S metabarcoding approach and the isolation/functional characterization of bacterial isolates. The results we obtained showed that geographical location is a factor that influences the composition and relative abundance of root endophyte communities in vetiver. Three hundred eighty-one bacterial endophytes were isolated and assessed for their in vitro antagonistic activities towards F. graminearum mycelium growth. In total, 46 % of the isolates showed at least 50 % inhibitory activity against F. graminearum. The taxonomic identification of the bioactive isolates revealed that the composition of these functional culturable endophytic communities was influenced by the geographic origins of the roots. The selected communities consisted of 15 genera. Some endophytes in Bacillus, Janthinobacterium, Kosakonia, Microbacterium, Pseudomonas, and Serratia showed strong growth inhibition activity (≥70 %) against F. graminearum and could be candidates for further development as biocontrol agents.


Asunto(s)
Bacterias/aislamiento & purificación , Chrysopogon/microbiología , Endófitos/aislamiento & purificación , Fusarium/crecimiento & desarrollo , Microbiota , Enfermedades de las Plantas/microbiología , Antibiosis , Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Endófitos/clasificación , Endófitos/genética , Endófitos/fisiología , Fusarium/fisiología , Micelio/crecimiento & desarrollo , Micelio/fisiología , Filogenia , Raíces de Plantas/microbiología
10.
Commun Biol ; 3(1): 673, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188250

RESUMEN

The synthesis of 3,5-dicaffeoylquinic acid (3,5-DiCQA) has attracted the interest of many researchers for more than 30 years. Recently, enzymes belonging to the BAHD acyltransferase family were shown to mediate its synthesis, albeit with notably low efficiency. In this study, a new enzyme belonging to the GDSL lipase-like family was identified and proven to be able to transform chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA, CGA) in 3,5-DiCQA with a conversion rate of more than 60%. The enzyme has been produced in different expression systems but has only been shown to be active when transiently synthesized in Nicotiana benthamiana or stably expressed in Pichia pastoris. The synthesis of the molecule could be performed in vitro but also by a bioconversion approach beginning from pure 5-CQA or from green coffee bean extract, thereby paving the road for producing it on an industrial scale.


Asunto(s)
Ipomoea batatas , Lipasa/metabolismo , Proteínas de Plantas/metabolismo , Ácido Quínico/análogos & derivados , Proteínas Recombinantes/metabolismo , Ipomoea batatas/enzimología , Ipomoea batatas/genética , Lipasa/química , Lipasa/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Quínico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
11.
Sci Rep ; 10(1): 17482, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060701

RESUMEN

In nutrient-poor habitats, carnivorous plants have developed novel feeding strategies based on the capture and digestion of prey and the assimilation of prey-derived nutrients by specialized traps. The Nepenthes genus, comprising nearly 160 species, presents a remarkable pitcher-shaped trap, leading to great interest among biologists, but the species of this genus are listed as threatened. In this work, we developed a protocol for reproducing Nepenthes mirabilis through shoot regeneration from calli. The cultivation of stem segments of N. mirabilis on MS medium containing thidiazuron induced organogenic calli after 10 weeks. Subcultured calli exposed to 6-benzylaminopurine showed shoot regeneration in 3 weeks with considerable yields (143 shoots/g of calli). Excised shoots transferred to medium with indole-3-butyric acid allowed rooting in 4 weeks, and rooted plantlets had a 100% survival rate. Based on this method, we also developed an Agrobacterium-mediated genetic transformation protocol using calli as explants and ipt as a positive method of selection. Twelve weeks post infection, regenerated shoots were observed at the surface of calli. Their transgenic status was confirmed by PCR and RT-PCR. In conclusion, this study provides an efficient method for regenerating Nepenthes and the first protocol for its stable genetic transformation, a new tool for studying carnivory.


Asunto(s)
Planta Carnívora/crecimiento & desarrollo , Planta Carnívora/genética , Caryophyllales/crecimiento & desarrollo , Caryophyllales/genética , Regeneración , Agrobacterium/genética , Compuestos de Bencilo/química , Biotecnología , Indoles/química , Compuestos de Fenilurea/química , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Purinas/química , Tiadiazoles/química , Técnicas de Cultivo de Tejidos , Transformación Genética
12.
Plant Sci ; 292: 110392, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32005397

RESUMEN

Furanocoumarins are defense molecules mainly described in four plant families that are phylogenetically distant. Molecular characterization of the biosynthetic pathway has been started for many years in Apiaceae and Rutaceae. The results obtained thus far in Apiaceae indicated a major role of cytochromes P450 (P450s) in the CYP71 family. In the present work, we describe the importance of another subfamily of P450s, CYP82D, identified by using a deep analysis of the citrus (Rutaceae) genome and microarray database. CYP82D64 is able to hydroxylate xanthotoxin to generate 5-OH-xanthotoxin. Minor and limited amino acid changes in the CYP82D64 coding sequence between Citrus paradisi and Citrus hystrix provide the enzyme in the latter with the ability to hydroxylate herniarin, but with low efficiency. The kinetic constants of the enzyme are consistent with those of other enzymes of this type in plants and indicate that it may be the physiological substrate. The activity of the enzyme is identical to that of CYP71AZ6 identified in parsnip, showing possible evolutionary convergence between these two families of plants. It is highly possible that these molecules are derived from the synthesis of ubiquitous coumarins throughout the plant kingdom.


Asunto(s)
Citrus/genética , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Furocumarinas/química , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Citrus/química , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Furocumarinas/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
13.
New Phytol ; 225(5): 2166-2182, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31642055

RESUMEN

Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical properties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four distant families with highly similar FC pathways. The mechanism by which this pathway emerged and spread in plants has not been elucidated. Furanocoumarin biosynthesis was investigated in Ficus carica (fig, Moraceae), focusing on the first committed reaction catalysed by an umbelliferone dimethylallyltransferase (UDT). Comparative RNA-seq analysis among latexes of different fig organs led to the identification of a UDT. The phylogenetic relationship of this UDT to previously reported Apiaceae UDTs was evaluated. The expression pattern of F. carica prenyltransferase 1 (FcPT1) was related to the FC contents in different latexes. Enzymatic characterization demonstrated that one of the main functions of FcPT1 is UDT activity. Phylogenetic analysis suggested that FcPT1 and Apiaceae UDTs are derived from distinct ancestors, although they both belong to the UbiA superfamily. These findings are supported by significant differences in the related gene structures. This report describes the identification of FcPT1 involved in FC biosynthesis in fig and provides new insights into multiple origins of the FC pathway and, more broadly, into the adaptation of plants to their environments.


Asunto(s)
Dimetilaliltranstransferasa , Ficus , Furocumarinas , Dimetilaliltranstransferasa/genética , Ficus/genética , Látex , Filogenia
14.
Commun Biol ; 2: 384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31646187

RESUMEN

Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.


Asunto(s)
Artemisia/enzimología , Dimetilaliltranstransferasa/aislamiento & purificación , Fenilpropionatos/metabolismo , Proteínas de Plantas/aislamiento & purificación , Artemisia/genética , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Genes de Plantas , Fenilpropionatos/química , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prenilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Biología Sintética/métodos
15.
Front Plant Sci ; 10: 793, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275341

RESUMEN

The recovery of recombinant proteins from plant tissues is an expensive and time-consuming process involving plant harvesting, tissue extraction, and subsequent protein purification. The downstream process costs can represent up to 80% of the total cost of production. Secretion-based systems of carnivorous plants might help circumvent this problem. Drosera and Nepenthes can produce and excrete out of their tissues a digestive fluid containing up to 200 mg. L-1 of natural proteins. Based on the properties of these natural bioreactors, we have evaluated the possibility to use carnivorous plants for the production of recombinant proteins. In this context, we have set up original protocols of stable and transient genetic transformation for both Drosera and Nepenthes sp. The two major drawbacks concerning the proteases naturally present in the secretions and a polysaccharidic network composing the Drosera glue were overcome by modulating the pH of the plant secretions. At alkaline pH, digestive enzymes are inactive and the interactions between the polysaccharidic network and proteins in the case of Drosera are subdued allowing the release of the recombinant proteins. For D. capensis, a concentration of 25 µg of GFP/ml of secretion (2% of the total soluble proteins from the glue) was obtained for stable transformants. For N. alata, a concentration of 0.5 ng of GFP/ml secretions (0.5% of total soluble proteins from secretions) was reached, corresponding to 12 ng in one pitcher after 14 days for transiently transformed plants. This plant-based expression system shows the potentiality of biomimetic approaches leading to an original production of recombinant proteins, although the yields obtained here were low and did not allow to qualify these plants for an industrial platform project.

16.
Metabolites ; 9(7)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340592

RESUMEN

Stresses such as wounding or atmospheric pollutant exposure have a significant impact on plant fitness. Since it has been widely described that the metabolome directly reflects plant physiological status, a way to assess this impact is to perform a global metabolomic analysis. In this study, we investigated the effect of two abiotic stresses (mechanical wounding and ozone exposure) on parsnip metabolic balance using a liquid chromatography-mass spectrometry-based untargeted metabolomic approach. For this purpose, parsnip leaves were submitted to an acute ozone exposure or were mechanically wounded and sampled 24, 48, and 72 h post-treatment. Multivariate and univariate statistical analyses highlighted numerous differentially-accumulated metabolic features as a function of time and treatment. Mechanical wounding led to a more differentiated response than ozone exposure. We found that the levels of coumarins and fatty acyls increased in wounded leaves, while flavonoid concentration decreased in the same conditions. These results provide an overview of metabolic destabilization through differentially-accumulated compounds and provide a better understanding of global plant metabolic changes in defense mechanisms.

17.
Planta ; 249(3): 617-633, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30689053

RESUMEN

Ficus species have adapted to diverse environments and pests by developing physical or chemical protection strategies. Physical defences are based on the accumulation of minerals such as calcium oxalate crystals, amorphous calcium carbonates and silica that lead to tougher plants. Additional cellular structures such as non-glandular trichomes or laticifer cells make the leaves rougher or sticky upon injury. Ficus have also established structures that are able to produce specialized metabolites (alkaloids, terpenoids, and phenolics) or proteins (proteases, protease inhibitors, oxidases, and chitinases) that are toxic to predators. All these defence mechanisms are distributed throughout the plant and can differ depending on the genotype, the stage of development or the environment. In this review, we present an overview of these strategies and discuss how these complementary mechanisms enable effective and flexible adaptation to numerous hostile environments.


Asunto(s)
Ficus/fisiología , Ficus/inmunología , Ficus/microbiología , Ficus/parasitología , Herbivoria , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología
18.
Plant Sci ; 277: 166-176, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30466582

RESUMEN

BACKGROUND: The production of secondary metabolites through the culture of entire plants is of great interest. Soilless culture, such as hydroponics, enables the control of plant growth and metabolism. Specific environmental conditions must be developed to maximize the productivity of medicinal plants used as efficient natural bioreactors. METHODS: The nutrient solution of newly established hydroponic cultures ofDatura innoxia Mill. were inoculated with Agrobacterium rhizogenes (A.r.) wild strains (TR7, TR107, 11325 or 15834). Growth and the alkaloid contents of roots and aerial parts were analyzed. Axenic cultures were also performed with modified TR7 strains containing the egfp or gus reporter gene. In vitro isolated root cultures enabled the phenological and molecular demonstration of gene transfer. RESULTS: A.r.TR 7 led to a greater improvement in plant secondary metabolism and growth. Positive expression of the reporter genes occurred. Isolation and subculture of some of the roots of these plants showed a hairy root phenotype; molecular tests proved the transfer of bacterial genes into the roots isolated from the plants. CONCLUSIONS: Hyoscyamine and scopolamine productivity is enhanced after A.r. inoculation in the nutrient solution of hydroponic plants. Transformation events occur in the original roots of the plants. This leads to chimeric plants with a part of their roots harboring a hairy root phenotype. Such semi-composite plants could be used for successful specialized metabolite bioproduction in greenhouses.


Asunto(s)
Agrobacterium/patogenicidad , Alcaloides/metabolismo , Datura/metabolismo , Datura/microbiología , Datura/crecimiento & desarrollo , Hidroponía , Desarrollo de la Planta
19.
Front Plant Sci ; 9: 820, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971079

RESUMEN

The production of coumarins and furanocoumarins (FCs) in higher plants is widely considered a model illustration of the adaptation of plants to their environment. In this report, we show that the multiplication of cytochrome P450 variants within the CYP71AZ subfamily has contributed to the diversification of these molecules. Multiple copies of genes encoding this enzyme family are found in Apiaceae, and their phylogenetic analysis suggests that they have different functions within these plants. CYP71AZ1 from Ammi majus and CYP71AZ3, 4, and 6 from Pastinaca sativa were functionally characterized. While CYP71AZ3 merely hydroxylated esculetin, the other enzymes accepted both simple coumarins and FCs. Superimposing in silico models of these enzymes led to the identification of different conformations of three regions in the enzyme active site. These sequences were subsequently utilized to mutate CYP71AZ4 to resemble CYP71AZ3. The swapping of these regions lead to significantly modified substrate specificity. Simultaneous mutations of all three regions shifted the specificity of CYP71AZ4 to that of CYP71AZ3, exclusively accepting esculetin. This approach may explain the evolution of this cytochrome P450 family regarding the appearance of FCs in parsnip and possibly in the Apiaceae.

20.
J Exp Bot ; 69(7): 1735-1748, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29361149

RESUMEN

Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'-Hydroxylase1 (F6'H1), which belongs to a large enzyme family of the 2-oxoglutarate and Fe2+-dependent dioxygenases. We have functionally characterized another enzyme of this family, which is a close homologue of F6'H1 and is encoded by a strongly iron-responsive gene, At3g12900. We purified At3g12900 protein heterologously expressed in Escherichia coli and demonstrated that it is involved in the conversion of scopoletin into fraxetin, via hydroxylation at the C8 position, and that it thus functions as a scopoletin 8-hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of S8H protein in Nicotiana benthamiana leaves, followed by metabolite profiling and biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under various iron regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part of mechanisms used by plants to assimilate iron.


Asunto(s)
Arabidopsis/genética , Cumarinas/metabolismo , Deficiencias de Hierro , Arabidopsis/enzimología , Escopoletina/metabolismo , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA