RESUMEN
Thyroid cancer is a tumor that occurs in the head and neck, which originates from the thyroid follicular epithelial cells. The current research is discussed and elaborated from the perspective of molecular prognostic biomarkers to gain a deeper understanding of the molecular mechanism of thyroid cancer and to provide more effective treatment and prognostic methods for patients. Thyroid cancer patients were explored from histological, cellular and clinical levels. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of LINC00847 and miR-146b-5p in the tissues and cells of the subjects. Cell growth and thyroid cancer progression were determined by the cell counting kit-8 (CCK-8) and transwell assays. The LINC00847 sponge miR-146b-5p was assessed by bioinformatics tools and luciferase reporter assay, and the Kaplan-Meier method and multivariate Cox regression analysis suggested the prognostic value of high expression of LINC00847. In thyroid cancer tissues and cells, the expression of LINC00847 was decreased. Overexpression of LINC00847 remarkably inhibited the proliferation level, migration ability and invasion ability of thyroid cancer cells. Besides, miR-146b-5p was upregulated in thyroid cancer tissues and cells. It was confirmed that LINC00847 targeting miR-146b-5p had a regulatory effect on the progression of thyroid cancer, and LINC00847 was negatively correlated with miR-146b-5p. LINC00847 may be considered a meaningful prognostic marker to influence tumor growth through sponge miR-146b-5p, which provides a new basis for the prognosis and treatment of thyroid cancer.
Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Tiroides , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Pronóstico , Línea Celular Tumoral , Neoplasias de la Tiroides/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
Head and neck squamous cell carcinoma (HNSCC) is characterized by an immunosuppression environment and necessitates the development of new immunotherapy response predictors. The study aimed to build a prognosis-related competing endogenous RNA (ceRNA) network based on immune-related genes (IRGs) and analyze its immunological signatures. Differentially expressed IRGs were identified by bioinformatics analysis with Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and ImmPort databases. Finally, via upstream prognosis-related microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) prediction and co-expression analysis, we built an immune-related ceRNA network (LINC00052/hsa-miR-148a-3p/PLAU) related to HNSCC patient prognosis. CIBERSORT analysis demonstrated that there were substantial differences in 11 infiltrating immune cells in HNSCC, and PLAU was closely correlated with 10 type cells, including T cells CD8+ (R = - 0.329), T cells follicular helper (R = - 0.342) and macrophage M0 (R = 0.278). Methylation and Tumor Immune Dysfunction and Exclusion (TIDE) analyses revealed that PLAU upregulation was most likely caused by hypomethylation and that high PLAU expression may be associated with tumor immune evasion in HNSCC, respectively.