Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 22(2): 155-167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459691

RESUMEN

STRO-002 is a novel homogeneous folate receptor alpha (FolRα) targeting antibody-drug conjugate (ADC) currently being investigated in the clinic as a treatment for ovarian and endometrial cancers. Here, we describe the discovery, optimization, and antitumor properties of STRO-002. STRO-002 was generated by conjugation of a novel cleavable 3-aminophenyl hemiasterlin linker-warhead (SC239) to the nonnatural amino acid para-azidomethyl-L-phenylalanine incorporated at specific positions within a high affinity anti-FolRα antibody using Sutro's XpressCF+, which resulted in a homogeneous ADC with a drug-antibody ratio (DAR) of 4. STRO-002 binds to FolRα with high affinity, internalizes rapidly into target positive cells, and releases the tubulin-targeting cytotoxin 3-aminophenyl hemiasterlin (SC209). SC209 has reduced potential for drug efflux via P-glycoprotein 1 drug pump compared with other tubulin-targeting payloads. While STRO-002 lacks nonspecific cytotoxicity toward FolRα-negative cell lines, bystander killing of target negative cells was observed when cocultured with target positive cells. STRO-002 is stable in circulation with no change in DAR for up to 21 days and has a half-life of 6.4 days in mice. A single dose of STRO-002 induced significant tumor growth inhibition in FolRα-expressing xenograft models and patient-derived xenograft models. In addition, combination treatment with carboplatin or Avastin further increased STRO-002 efficacy in xenograft models. The potent and specific preclinical efficacy of STRO-002 supports clinical development of STRO-002 for treating patients with FolRα-expressing cancers, including ovarian, endometrial, and non-small cell lung cancer. Phase I dose escalation for STRO-002 is in progress in ovarian cancer and endometrial cancer patients (NCT03748186 and NCT05200364).


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Endometriales , Inmunoconjugados , Neoplasias Pulmonares , Femenino , Humanos , Animales , Ratones , Inmunoconjugados/química , Tubulina (Proteína)/metabolismo , Receptor 1 de Folato , Antineoplásicos/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Sci Rep ; 7(1): 3026, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596531

RESUMEN

Amber codon suppression for the insertion of non-natural amino acids (nnAAs) is limited by competition with release factor 1 (RF1). Here we describe the genome engineering of a RF1 mutant strain that enhances suppression efficiency during cell-free protein synthesis, without significantly impacting cell growth during biomass production. Specifically, an out membrane protease (OmpT) cleavage site was engineered into the switch loop of RF1, which enables its conditional inactivation during cell lysis. This facilitates extract production without additional processing steps, resulting in a scaleable extract production process. The RF1 mutant extract allows nnAA incorporation at previously intractable sites of an IgG1 and at multiple sites in the same polypeptide chain. Conjugation of cytotoxic agents to these nnAAs, yields homogeneous antibody drug conjugates (ADCs) that can be optimized for conjugation site, drug to antibody ratio (DAR) and linker-warheads designed for efficient tumor killing. This platform provides the means to generate therapeutic ADCs inaccessible by other methods that are efficient in their cytotoxin delivery to tumor with reduced dose-limiting toxicities and thus have the potential for better clinical impact.


Asunto(s)
Aminoácidos/química , Inmunoconjugados , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Ingeniería de Proteínas , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Codón de Terminación , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/química , Inmunoconjugados/aislamiento & purificación , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacología , Inmunoglobulina G/química , Inmunoglobulina G/farmacología , Espectrometría de Masas , Modelos Moleculares , Mutación , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Trastuzumab/química , Trastuzumab/farmacología
3.
MAbs ; 7(1): 231-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25427258

RESUMEN

Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a "knob" or a "hole" in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Expresión Génica , Anticuerpos de Cadena Única/biosíntesis , Animales , Anticuerpos Biespecíficos/genética , Células CHO , Sistema Libre de Células/metabolismo , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Anticuerpos de Cadena Única/genética
4.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24437342

RESUMEN

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Asunto(s)
Aminoácidos/química , Inmunoconjugados/química , Línea Celular , Sistema Libre de Células , Cromatografía Liquida , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunoconjugados/farmacología , Espectrometría de Masas en Tándem
5.
Anal Chim Acta ; 723: 68-75, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22444575

RESUMEN

Paraoxon (diethyl 4-nitrophenyl phosphate) is an active metabolite of the common insecticide parathion and is acutely toxic due to the inhibition of cholinesterase (ChE) activity in the nervous systems. The inhibition of butyrylcholinesterase (BChE) activity by paraoxon is due to the formation of phosphorylated BChE adduct, and the detection of the phosphorylated BChE adduct in human plasma can serve as an exposure biomarker of organophosphate pesticides and nerve agents. In this study, we developed an immunoaffinity purification and liquid chromatography-mass spectrometry (LC-MS) strategy for identifying phosphorylated BChE in human plasma treated by paraoxon. BChE was captured by biotinylated anti-BChE polyclonal antibodies conjugated to streptavidin magnetic beads. Western blot analysis showed that the antibody was effective to recognize both native and modified BChE with high specificity. Using a purified BChE protein, we initially identified the exact phosphorylation site on the serine residue (S198) with a 108 Da modification by both MS/MS and accurately measured parent ion masses and quantified the extent of phosphorylation on S198 following paraoxon treatment to be >99.9%. Then, the phosphorylated BChE peptide in paraoxon-treated human plasma following immunoaffinity purification was successfully identified based on the accurate measured mass and retention time information initially obtained from the purified BChE protein. Thus, immunoaffinity purification combined with LC-MS represents a viable approach for the detection and quantification of phosphorylated BChE as an exposure biomarker of organophosphates and nerve agents.


Asunto(s)
Butirilcolinesterasa/sangre , Cromatografía de Afinidad , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Anticuerpos Inmovilizados/inmunología , Biotina/química , Biotina/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/aislamiento & purificación , Electrocromatografía Capilar , Humanos , Técnicas de Inmunoadsorción , Magnetismo , Datos de Secuencia Molecular , Paraoxon/química , Fosfopéptidos/análisis , Fosforilación , Estreptavidina/química , Estreptavidina/metabolismo
6.
Anal Chem ; 82(17): 7160-8, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20687582

RESUMEN

Here we present a novel and robust method for the identification of protein S-nitrosylation sites in complex protein mixtures. The approach utilizes the cysteinyl affinity resin to selectively enrich S-nitrosylated peptides reduced by ascorbate followed by nanoscale liquid chromatography tandem mass spectrometry. Two alkylation agents with different added masses were employed to differentiate the S-nitrosylation sites from the non-S-nitrosylation sites. We applied this approach to MDA-MB-231 cells treated with Angeli's salt, a nitric oxide donor that has been shown to inhibit breast tumor growth and angiogenesis. A total of 162 S-nitrosylation sites were identified and an S-nitrosylation motif was revealed in our study. The 162 sites are significantly more than the number reported by previous methods, demonstrating the efficiency of our approach. Our approach will further facilitate the functional study of protein S-nitrosylation in cellular processes and may reveal new therapeutic targets.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Óxido Nítrico/metabolismo , Proteínas/química , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Ácido Ascórbico/química , Sitios de Unión , Línea Celular Tumoral , Cisteína/química , Cisteína/metabolismo , Humanos , Tripsina/metabolismo
7.
Mol Cell Proteomics ; 9(6): 1199-208, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20124354

RESUMEN

Oxidative modifications of protein tyrosines have been implicated in multiple human diseases. Among these modifications, elevations in levels of 3,4-dihydroxyphenylalanine (DOPA), a major product of hydroxyl radical addition to tyrosine, has been observed in a number of pathologies. Here we report the first proteome survey of endogenous site-specific modifications, i.e. DOPA and its further oxidation product dopaquinone in mouse brain and heart tissues. Results from LC-MS/MS analyses included 50 and 14 DOPA-modified tyrosine sites identified from brain and heart, respectively, whereas only a few nitrotyrosine-containing peptides, a more commonly studied marker of oxidative stress, were detectable, suggesting the much higher abundance for DOPA modification as compared with tyrosine nitration. Moreover, 20 and 12 dopaquinone-modified peptides were observed from brain and heart, respectively; nearly one-fourth of these peptides were also observed with DOPA modification on the same sites. For both tissues, these modifications are preferentially found in mitochondrial proteins with metal binding properties, consistent with metal-catalyzed hydroxyl radical formation from mitochondrial superoxide and hydrogen peroxide. These modifications also link to a number of mitochondrially associated and other signaling pathways. Furthermore, many of the modification sites were common sites of previously reported tyrosine phosphorylation, suggesting potential disruption of signaling pathways. Collectively, the results suggest that these modifications are linked with mitochondrially derived oxidative stress and may serve as sensitive markers for disease pathologies.


Asunto(s)
Benzoquinonas/metabolismo , Dihidroxifenilalanina/análogos & derivados , Radical Hidroxilo/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Tirosina/metabolismo , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Animales , Benzoquinonas/química , Encéfalo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Miocardio/metabolismo , Especificidad de Órganos , Péptidos/química , Péptidos/metabolismo , Tirosina/química
8.
J Proteome Res ; 8(8): 3852-61, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19534553

RESUMEN

Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here, we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying antiphosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that a majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems.


Asunto(s)
Glándulas Mamarias Humanas/metabolismo , Fosfotirosina/metabolismo , Tirosina/metabolismo , Algoritmos , Secuencias de Aminoácidos , Línea Celular , Cromatografía Liquida , Factor de Crecimiento Epidérmico/metabolismo , Células Epiteliales/metabolismo , Humanos , Glándulas Mamarias Humanas/citología , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Mapeo Peptídico , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Fosforilación , Fosfotirosina/análisis , Mapeo de Interacción de Proteínas , Proteoma/análisis , Proteoma/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem , Tirosina/análisis
9.
J Proteome Res ; 7(10): 4215-24, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18785766

RESUMEN

Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.


Asunto(s)
Quimiotaxis/efectos de los fármacos , Cromatografía de Afinidad/métodos , Lisofosfolípidos/farmacología , Metales/química , Fosfopéptidos , Secuencia de Aminoácidos , Animales , Células COS/química , Células COS/metabolismo , Chlorocebus aethiops , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Isótopos de Oxígeno/química , Isótopos de Oxígeno/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo
10.
J Proteome Res ; 7(9): 3860-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18686986

RESUMEN

A new sample processing workflow that uses high intensity focused ultrasound to rapidly reduce and alkylate cysteines, digest proteins and then label peptides with (18)O was developed for quantitative proteomics applications. Each step was individually refined to minimize reaction times, peptide loses and undesired byproducts or modifications. When this novel workflow was used, mouse plasma proteins were successfully denatured, alkylated, in-solution digested, and (18)O-labeled in <10 min for subsequent analysis by liquid chromatography-electrospray ionization high resolution mass spectrometry. Performance was evaluated in terms of the number of mouse plasma peptides and proteins identified in a shotgun approach and the quantitative dynamic range. The results were compared with previously published results obtained using conventional sample preparation methods and were found to be similar. Advantages of the new method include greatly simplified and accelerated sample processing, as well as being readily amenable to automation.


Asunto(s)
Cromatografía Liquida/métodos , Proteómica , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Animales , Ratones , Datos de Secuencia Molecular
11.
J Proteome Res ; 7(8): 3276-81, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18605748

RESUMEN

A new method for rapid proteolytic digestion of proteins under high pressure that uses pressure cycling technology in the range of 5-35 kpsi was demonstrated for proteomic analysis. Successful in-solution digestions of single proteins and complex protein mixtures were achieved in 60 s and then analyzed by reversed phase liquid chromatography-electrospray ionization ion trap-mass spectrometry. Method performance in terms of the number of Shewanella oneidensis peptides and proteins identified in a shotgun approach was evaluated relative to a traditional "overnight" sample preparation method. Advantages of the new method include greatly simplified sample processing, easy implementation, no cross contamination among samples, and cost effectiveness.


Asunto(s)
Proteómica/métodos , Solventes , Tripsina/química , Animales , Proteínas Bacterianas/análisis , Tampones (Química) , Cromatografía Liquida , Hemoglobinas/análisis , Caballos , Hidrólisis , Presión , Pliegue de Proteína , Shewanella/química , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...