RESUMEN
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 [Formula: see text]J. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
RESUMEN
Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.
RESUMEN
A quantitative investigation of the relaxation dynamics of higher-lying vibrational states is afforded by a novel method of infrared pump-repump-probe spectroscopy. The technique is used to study the dynamics of OH stretching overtones in NaClO4·HDO monohydrate. We observe a continuous decrease of the energy separation for the first four states, i.e. v01 = 3575 cm(-1), v12 = 3370 cm(-1), and v23 = 3170 cm(-1), respectively. The population lifetime of the first excited state is 7.2 ps, while the one of the second excited state is largely reduced to 1.4 ps. The relaxation of the v = 2 state proceeds nearly quantitatively to the v = 1 state. The new information on the OH stretching overtones demands improved theoretical potentials and modeling of the H bond interactions. This work shows the potential of the new technique for the precise study of complex vibrational relaxation pathways.
Asunto(s)
Ciclohexanos/química , Imidas/química , Espectrofotometría Infrarroja/métodos , Hidrógeno/química , Enlace de Hidrógeno , Oxígeno/química , Percloratos/química , Compuestos de Sodio/química , VibraciónRESUMEN
We present a three-color mid-IR setup for vibrational pump-repump-probe experiments with a temporal resolution well below 100 fs and a freely selectable spectral resolution of 20 to 360 cm(-1) for the pump and repump. The usable probe range without optical realignment is 900 cm(-1). The experimental design employed is greatly simplified compared to the widely used setups, highly robust and includes a novel means for generation of tunable few-cycle pulses with stable carrier-envelope phase. A Ti:sapphire pump system operating with 1 kHz and a modest 150 fs pulse duration supplies the total pump energy of just 0.6 mJ. The good signal-to-noise ratio of the setup allows the determination of spectrally resolved transient probe changes smaller than 6·10(-5) OD at 130 time delays in just 45 minutes. The performance of the spectrometer is demonstrated with transient IR spectra and decay curves of HDO molecules in lithium nitrate trihydrate and ice and a first all MIR pump-repump-probe measurement.