Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38648741

RESUMEN

SUMMARY: SIMSApiper is a Nextflow pipeline that creates reliable, structure-informed MSAs of thousands of protein sequences faster than standard structure-based alignment methods. Structural information can be provided by the user or collected by the pipeline from online resources. Parallelization with sequence identity-based subsets can be activated to significantly speed up the alignment process. Finally, the number of gaps in the final alignment can be reduced by leveraging the position of conserved secondary structure elements. AVAILABILITY AND IMPLEMENTATION: The pipeline is implemented using Nextflow, Python3, and Bash. It is publicly available on github.com/Bio2Byte/simsapiper.


Asunto(s)
Proteínas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Programas Informáticos , Proteínas/química , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencia de Aminoácidos , Biología Computacional/métodos , Bases de Datos de Proteínas
2.
Biomaterials ; 297: 122105, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031548

RESUMEN

The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (REGAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain REGAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed REGAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.


Asunto(s)
Enfermedades Óseas , Regeneración Ósea , Glicosaminoglicanos , Péptidos y Proteínas de Señalización Intercelular , Animales , Ratones , Huesos/metabolismo , Glicosaminoglicanos/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...