Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenetics Chromatin ; 16(1): 36, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759327

RESUMEN

BACKGROUND: NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS: We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS: Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.


Asunto(s)
Heterocromatina , Histonas , Cromatina , ADN , Histonas/metabolismo , Nucleofosmina , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Ratones
2.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598943

RESUMEN

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Asunto(s)
Factores de Transcripción Forkhead , Síndrome de Rett , Ratones , Animales , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Síndrome de Rett/genética , Epigénesis Genética , Cromatina/genética , Cromatina/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
Nucleic Acids Res ; 47(1): 168-183, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30329130

RESUMEN

Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Metiltransferasas/genética , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , División Celular/genética , Proliferación Celular/genética , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Metilación , Ratones , Neuronas/patología , Proteínas Represoras/genética , Factores de Transcripción SOXD/genética , Proteínas de Dominio T Box , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Telencéfalo/patología , Proteínas Supresoras de Tumor/genética
4.
Mol Neurobiol ; 56(7): 5188-5201, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30539330

RESUMEN

Rett syndrome is a complex neurodevelopmental disorder that is mainly caused by mutations in MECP2. However, mutations in FOXG1 cause a less frequent form of atypical Rett syndrome, called FOXG1 syndrome. FOXG1 is a key transcription factor crucial for forebrain development, where it maintains the balance between progenitor proliferation and neuronal differentiation. Using genome-wide small RNA sequencing and quantitative proteomics, we identified that FOXG1 affects the biogenesis of miR200b/a/429 and interacts with the ATP-dependent RNA helicase, DDX5/p68. Both FOXG1 and DDX5 associate with the microprocessor complex, whereby DDX5 recruits FOXG1 to DROSHA. RNA-Seq analyses of Foxg1cre/+ hippocampi and N2a cells overexpressing miR200 family members identified cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) as a target of miR200 in neural cells. PRKAR2B inhibits postsynaptic functions by attenuating protein kinase A (PKA) activity; thus, increased PRKAR2B levels may contribute to neuronal dysfunctions in FOXG1 syndrome. Our data suggest that FOXG1 regulates PRKAR2B expression both on transcriptional and posttranscriptional levels.


Asunto(s)
Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transcripción Genética/fisiología , Factores de Edad , Animales , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Factores de Transcripción Forkhead/genética , Hipocampo/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Proteínas del Tejido Nervioso/genética
5.
Mol Neurobiol ; 56(6): 4273-4287, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30302725

RESUMEN

The disruptor of telomeric silencing 1-like (DOT1L) mediates methylation of histone H3 at position lysine 79 (H3K79). Conditional knockout of Dot1l in mouse cerebellar granule cells (Dot1l-cKOAtoh1) led to a smaller external granular layer with fewer precursors of granule neurons. Dot1l-cKOAtoh1 mice had impaired proliferation and differentiation of granular progenitors, which resulted in a smaller cerebellum. Mutant mice showed mild ataxia in motor behavior tests. In contrast, Purkinje cell-specific conditional knockout mice showed no obvious phenotype. Genome-wide transcription analysis of Dot1l-cKOAtoh1 cerebella using microarrays revealed changes in genes that function in cell cycle, cell migration, axon guidance, and metabolism. To identify direct DOT1L target genes, we used genome-wide profiling of H3K79me2 and transcriptional analysis. Analysis of differentially methylated regions (DR) and differentially expressed genes (DE) revealed in total 12 putative DOT1L target genes in Dot1l-cKOAtoh1 affecting signaling (Tnfaip8l3, B3galt5), transcription (Otx1), cell migration and axon guidance (Sema4a, Sema5a, Robo1), cholesterol and lipid metabolism (Lss, Cyp51), cell cycle (Cdkn1a), calcium-dependent cell-adhesion or exocytosis (Pcdh17, Cadps2), and unknown function (Fam174b). Dysregulated expression of these target genes might be implicated in the ataxia phenotype observed in Dot1l-cKOAtoh1.


Asunto(s)
Cerebelo/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Animales , Orientación del Axón/genética , Ciclo Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Colesterol/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Estrés Fisiológico , Transcriptoma/genética
6.
Front Cell Neurosci ; 12: 448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555301

RESUMEN

Heterogeneous astrocyte populations are defined by diversity in cellular environment, progenitor identity or function. Yet, little is known about the extent of the heterogeneity and how this diversity is acquired during development. To investigate the impact of TGF (transforming growth factor) ß-signaling on astrocyte development in the telencephalon we deleted the TGFBR2 (transforming growth factor beta receptor 2) in early neural progenitor cells in mice using a FOXG1 (forkhead box G1)-driven CRE-recombinase. We used quantitative proteomics to characterize TGFBR2-deficient cells derived from the mouse telencephalon and identified differential protein expression of the astrocyte proteins GFAP (glial fibrillary acidic protein) and MFGE8 (milk fat globule-EGF factor 8). Biochemical and histological investigations revealed distinct populations of astrocytes in the dorsal and ventral telencephalon marked by GFAP or MFGE8 protein expression. The two subtypes differed in their response to TGFß-signaling. Impaired TGFß-signaling affected numbers of GFAP astrocytes in the ventral telencephalon. In contrast, TGFß reduced MFGE8-expression in astrocytes deriving from both regions. Additionally, lineage tracing revealed that both GFAP and MFGE8 astrocyte subtypes derived partly from FOXG1-expressing neural precursor cells.

7.
Mater Sci Eng C Mater Biol Appl ; 91: 659-668, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30033300

RESUMEN

High-resolution analytical methods, including synchrotron infrared microspectroscopy combined with wavelength-dispersive X-ray emission spectroscopy were applied to study the structure and chemical composition of the oxidized layer of pure and Ag-alloyed Mg exposed to cell culture media without and with osteoblasts. Comparative analysis has been done on pure Mg immersed in two different cell culture media: Dulbecco's Modified Eagle's Medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), whereas Mg-xAg binary alloys (x = 2, 4, 6, 8 wt%) were studied after immersion in DMEM. It is shown that the physicochemical formation of degradation products as well as the activity of the biological component is influenced by the addition of silver. It could be demonstrated that the presence of Ag in the Mg alloy enhances the chemical reaction between Mg and C to form amorphous and/or crystalline MgCO3 on account of CaCO3. As a consequence, the further available P and Ca react easily to form Mg-poor amorphous calcium phosphate phases. Osteoblasts actively adjusted these phases towards hydroxyapatite-like phases.


Asunto(s)
Aleaciones/farmacología , Materiales Biocompatibles/farmacología , Magnesio/farmacología , Microespectrofotometría , Osteoblastos/citología , Plata/farmacología , Sincrotrones , Animales , Humanos , Concentración de Iones de Hidrógeno , Osteoblastos/efectos de los fármacos , Oxidación-Reducción , Óxidos/química , Espectrofotometría Infrarroja , Propiedades de Superficie
8.
J Vis Exp ; (131)2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29443015

RESUMEN

Brain development is a complex process, which is controlled in a temporo-spatial manner by gradients of morphogens and different transcriptional programs. Additionally, epigenetic chromatin modifications, like histone methylation, have an important role for establishing and maintaining specific cell fates within this process. The vast majority of histone methylation occurs on the flexible histone tail, which is accessible to histone modifiers, erasers, and histone reader proteins. In contrast, H3K79 methylation is located in the globular domain of histone 3 and is implicated in different developmental functions. H3K79 methylation is evolutionarily conserved and can be found in a wide range of species from Homo sapiens to Saccharomyces cerevisiae. The modification occurs in different cell populations within organisms, including neural progenitors. The location of H3K79 methylation in the globular domain of histone 3 makes it difficult to assess. Here, we present methods to isolate and culture cortical progenitor cells (CPCs) from embryonic cortical brain tissue (E11.5-E14.5) or cerebellar granular neuron progenitors (CGNPs) from postnatal tissue (P5-P7), and to efficiently immunoprecipitate H3K79me2 for quantitative PCR (qPCR) and genome-wide sequencing.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Técnicas Citológicas/métodos , Histonas/genética , Lisina/genética , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Animales , Ratones
9.
Cereb Cortex ; 27(8): 4166-4181, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444170

RESUMEN

Neuronal activity is altered in several neurological and psychiatric diseases. Upon depolarization not only neurotransmitters are released but also cytokines and other activators of signaling cascades. Unraveling their complex implication in transcriptional control in receiving cells will contribute to understand specific central nervous system (CNS) pathologies and will be of therapeutically interest. In this study we depolarized mature hippocampal neurons in vitro using KCl and revealed increased release not only of brain-derived neurotrophic factor (BDNF) but also of transforming growth factor beta (TGFB). Neuronal activity together with BDNF and TGFB controls transcription of DNA modifying enzymes specifically members of the DNA-damage-inducible (Gadd) family, Gadd45a, Gadd45b, and Gadd45g. MeDIP followed by massive parallel sequencing and transcriptome analyses revealed less DNA methylation upon KCl treatment. Psychiatric disorder-related genes, namely Tshz1, Foxn3, Jarid2, Per1, Map3k5, and Arc are transcriptionally activated and demethylated upon neuronal activation. To analyze whether misexpression of Gadd45 family members are associated with psychiatric diseases, we applied unpredictable chronic mild stress (UCMS) as established model for depression to mice. UCMS led to reduced expression of Gadd45 family members. Taken together, our data demonstrate that Gadd45 family members are new putative targets for UCMS treatments.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Metilación de ADN , Hipocampo/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Estrés Psicológico/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Enfermedad Crónica , Trastorno Depresivo/genética , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Estrés Psicológico/genética , Transmisión Sináptica/fisiología , Transcriptoma
10.
Oncotarget ; 7(25): 37436-37455, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27224923

RESUMEN

Transforming growth factor ß (TGFß)-mediated anti-proliferative and differentiating effects promote neuronal differentiation during embryonic central nervous system development. TGFß downstream signals, composed of activated SMAD2/3, SMAD4 and a FOXO family member, promote the expression of cyclin-dependent kinase inhibitor Cdkn1a. In early CNS development, IGF1/PI3K signaling and the transcription factor FOXG1 inhibit FOXO- and TGFß-mediated Cdkn1a transcription. FOXG1 prevents cell cycle exit by binding to the SMAD/FOXO-protein complex. In this study we provide further details on the FOXG1/FOXO/SMAD transcription factor network. We identified ligands of the TGFß- and IGF-family, Foxo1, Foxo3 and Kcnh3 as novel FOXG1-target genes during telencephalic development and showed that FOXG1 interferes with Foxo1 and Tgfß transcription. Our data specify that FOXO1 activates Cdkn1a transcription. This process is under control of the IGF1-pathway, as Cdkn1a transcription increases when IGF1-signaling is pharmacologically inhibited. However, overexpression of CDKN1A and knockdown of Foxo1 and Foxo3 is not sufficient for neuronal differentiation, which is probably instructed by TGFß-signaling. In mature neurons, FOXG1 activates transcription of the seizure-related Kcnh3, which might be a FOXG1-target gene involved in the FOXG1 syndrome pathology.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Neuronas/metabolismo , Proteínas Smad/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Transducción de Señal , Transfección
11.
Stem Cells ; 34(1): 233-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26299268

RESUMEN

Growing evidence suggests that the lysine methyltransferase DOT1L/KMT4 has important roles in proliferation, survival, and differentiation of stem cells in development and in disease. We investigated the function of DOT1L in neural stem cells (NSCs) of the cerebral cortex. The pharmacological inhibition and shRNA-mediated knockdown of DOT1L impaired proliferation and survival of NSCs. DOT1L inhibition specifically induced genes that are activated during the unfolded protein response (UPR) in the endoplasmic reticulum (ER). Chromatin-immunoprecipitation analyses revealed that two genes encoding for central molecules involved in the ER stress response, Atf4 and Ddit3 (Chop), are marked with H3K79 methylation. Interference with DOT1L activity resulted in transcriptional activation of both genes accompanied by decreased levels of H3K79 dimethylation. Although downstream effectors of the UPR, such as Ppp1r15a/Gadd34, Atf3, and Tnfrsf10b/Dr5 were also transcriptionally activated, this most likely occurred in response to increased ATF4 expression rather than as a direct consequence of altered H3K79 methylation. While stem cells are particularly vulnerable to stress, the UPR and ER stress have not been extensively studied in these cells yet. Since activation of the ER stress program is also implicated in directing stem cells into differentiation or to maintain a proliferative status, the UPR must be tightly regulated. Our and published data suggest that histone modifications, including H3K4me3, H3K14ac, and H3K79me2, are implicated in the control of transcriptional activation of ER stress genes. In this context, the loss of H3K79me2 at the Atf4- and Ddit3-promoters appears to mark a point-of-no-return that activates the death program in NSCs.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Corteza Cerebral/citología , Estrés del Retículo Endoplásmico , Metiltransferasas/metabolismo , Células-Madre Neurales/citología , Neuroprotección , Factor de Transcripción CHOP/metabolismo , Animales , Bencimidazoles/farmacología , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Lisina , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuroprotección/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
12.
Mater Sci Eng C Mater Biol Appl ; 58: 817-25, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478376

RESUMEN

Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR).


Asunto(s)
Magnesio/química , Sales (Química)/química , Tampones (Química) , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Concentración Osmolar , Espectroscopía Infrarroja por Transformada de Fourier
13.
Acta Biomater ; 25: 384-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26210283

RESUMEN

RATIONALE: Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. OBJECTIVE: The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. METHODS AND RESULTS: Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. CONCLUSIONS: The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. STATEMENT OF SIGNIFICANCE: The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications.


Asunto(s)
Aleaciones/farmacología , Magnesio/farmacología , Ensayo de Materiales , Adulto , Antitrombina III/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Calcio/análisis , Corrosión , Humanos , Iones , Magnesio/análisis , Óxidos/análisis , Péptido Hidrolasas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Adulto Joven
14.
Hum Mol Genet ; 23(23): 6177-90, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24990151

RESUMEN

Simultaneous generation of neural cells and that of the nutrient-supplying vasculature during brain development is called neurovascular coupling. We report on a transgenic mouse with impaired transforming growth factor ß (TGFß)-signalling in forebrain-derived neural cells using a Foxg1-cre knock-in to drive the conditional knock-out of the Tgfbr2. Although the expression of FOXG1 is assigned to neural progenitors and neurons of the telencephalon, Foxg1(cre/+);Tgfbr2(flox/flox) (Tgfbr2-cKO) mutants displayed intracerebral haemorrhage. Blood vessels exhibited an atypical, clustered appearance were less in number and displayed reduced branching. Vascular endothelial growth factor (VEGF) A, insulin-like growth factor (IGF) 1, IGF2, TGFß, inhibitor of DNA binding (ID) 1, thrombospondin (THBS) 2, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1 were altered in either expression levels or tissue distribution. Accordingly, human umbilical vein endothelial cells (HUVEC) displayed branching defects after stimulation with conditioned medium (CM) that was derived from primary neural cultures of the ventral and dorsal telencephalon of Tgfbr2-cKO. Supplementing CM of Tgfbr2-cKO with VEGFA rescued these defects, but application of TGFß aggravated them. HUVEC showed reduced migration towards CM of mutants compared with controls. Supplementing the CM with growth factors VEGFA, fibroblast growth factor (FGF) 2 and IGF1 partially restored HUVEC migration. In contrast, TGFß supplementation further impaired migration of HUVEC. We observed differences along the dorso-ventral axis of the telencephalon with regard to the impact of these factors on the phenotype. Together these data establish a TGFBR2-dependent molecular crosstalk between neural and endothelial cells during brain vessel development. These findings will be useful to further elucidate neurovascular interaction in general and to understand pathologies of the blood vessel system such as intracerebral haemorrhages, hereditary haemorrhagic telangiectasia, Alzheimers disease, cerebral amyloid angiopathy or tumour biology.


Asunto(s)
Encéfalo/metabolismo , Neovascularización Fisiológica , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/patología , Movimiento Celular , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Medios de Cultivo Condicionados , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/patología , Pericitos/metabolismo , Pericitos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Vías Secretoras , Telencéfalo/irrigación sanguínea , Telencéfalo/metabolismo , Telencéfalo/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
PLoS One ; 6(4): e19239, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21541283

RESUMEN

BACKGROUND: Mesencephalic dopaminergic neurons (mDA) and serotonergic (5-HT) neurons are clinically important ventral neuronal populations. Degeneration of mDA is associated with Parkinson's disease; defects in the serotonergic system are related to depression, obsessive-compulsive disorder, and schizophrenia. Although these neuronal subpopulations reveal positional and developmental relationships, the developmental cascades that govern specification and differentiation of mDA or 5-HT neurons reveal missing determinants and are not yet understood. METHODOLOGY: We investigated the impact of the transcription factor Sim1 in the differentiation of mDA and rostral 5-HT neurons in vivo using Sim1-/- mouse embryos and newborn pups, and in vitro by gain- and loss-of-function approaches. PRINCIPAL FINDINGS: We show a selective significant reduction in the number of dorsal raphe nucleus (DRN) 5-HT neurons in Sim1-/- newborn mice. In contrast, 5-HT neurons of other raphe nuclei as well as dopaminergic neurons were not affected. Analysis of the underlying molecular mechanism revealed that tryptophan hydroxylase 2 (Tph2) and the transcription factor Pet1 are regulated by Sim1. Moreover, the transcription factor Lhx8 and the modulator of 5-HT(1A)-mediated neurotransmitter release, Rgs4, exhibit significant higher expression in ventral hindbrain, compared to midbrain and are target genes of Sim1. CONCLUSIONS: The results demonstrate for the first time a selective transcription factor dependence of the 5-HT cell groups, and introduce Sim1 as a regulator of DRN specification acting upstream of Pet1 and Tph2. Moreover, Sim1 may act to modulate serotonin release via regulating RGS4. Our study underscores that subpopulations of a common neurotransmitter phenotype use distinct combinations of transcription factors to control the expression of shared properties.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Neuronas/citología , Núcleos del Rafe/citología , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores/metabolismo , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Dopamina/metabolismo , Estudios de Asociación Genética , Mesencéfalo/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Neuronas/enzimología , Fenotipo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Núcleos del Rafe/metabolismo , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serotonina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba/genética
16.
Acta Biomater ; 7(6): 2704-15, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21382530

RESUMEN

The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In this paper magnesium samples were incubated under cell culture conditions (i.e. including CO(2)) in electrolyte solutions and cell growth media, with and without proteins. Chemical mapping by high-resolution electron-induced X-ray emission spectroscopy and infrared reflection microspectroscopy revealed a complex structure of the formed corrosion layer. The presence of CO(2) in concentrations close to that in blood is significant for the chemistry of the oxidised layer. The presence of proteins leads to a less dense but thicker passivation layer which is still ion and water permeable, as osmolality and weight measurements indicate.


Asunto(s)
Magnesio/química , Análisis Espectral/métodos , Microscopía Electrónica de Rastreo
17.
J Biomed Mater Res A ; 88(1): 195-204, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18286604

RESUMEN

Changes in the chemistry and structure of enamel due to a non-peroxide-based home bleaching product (Rapid White) were studied in vitro using attenuated total reflectance-infrared spectroscopy, Raman spectroscopy, electron probe microanalysis, flame atomic absorption spectroscopy, and total reflection X-ray fluorescence. The results revealed that the citric-acid-containing gel-like component of the bleaching system substantially impacts on the dental hard tissue. Enamel is affected on several levels: (i) the organic component is removed from superficial and deeper enamel layers and remnants of the bleaching gel are embedded in the emptied voids; (ii) cracks and chemical inhomogeneities with respect to Ca and P occur on the surface; and (iii) within a submicron layer of enamel, the Ca-O bond strength in apatite decreases, thus enhancing calcium leakage from the bleached enamel hard tissue.


Asunto(s)
Esmalte Dental/patología , Blanqueamiento de Dientes/efectos adversos , Calcio , Ácido Cítrico , Esmalte Dental/efectos de los fármacos , Geles , Servicios de Atención de Salud a Domicilio , Humanos , Fósforo , Análisis Espectral , Blanqueamiento de Dientes/métodos , Desmineralización Dental/inducido químicamente
18.
Stem Cells ; 26(7): 1683-94, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18420832

RESUMEN

The aim of the present study was to investigate the putative cooperative effects of transforming growth factor beta (TGF-beta) and glial cell line-derived neurotrophic factor (GDNF) family ligands in the differentiation of midbrain progenitors toward a dopaminergic phenotype. Therefore, a mouse midbrain embryonic day (E) 12 neurospheres culture was used as an experimental model. We show that neurturin and persephin (PSPN), but not GDNF, are capable of transient induction of dopaminergic neurons in vitro. This process, however, requires the presence of endogenous TGF-beta. In contrast, after 8 days in vitro GDNF rescued the TGF-beta neutralization-dependent loss of the TH-positive cells. In vivo, at E14.5, no apparent phenotype concerning dopaminergic neurons was observed in Tgf-beta2(-/-)/gdnf(-/-) double mutant mice. In vitro, combined TGF-beta/PSPN treatment achieved a yield of approximately 20% TH-positive cells that were less vulnerable against 1-methyl-4-phenyl pyridinium ion toxicity. The underlying TGF-beta/PSPN differentiation signaling is receptor-mediated, involving p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. These results indicate that phenotype induction and survival of fully differentiated neurons are accomplished through distinct pathways and individual factor requirement. TGF-beta is required for the induction of dopaminergic neurons, whereas GDNF is required for regulating and/or maintaining a differentiated neuronal phenotype. Moreover, this study suggests that the combination of TGF-beta with PSPN is a potent inductive cocktail for the generation of dopaminergic neurons that should be considered in tissue engineering and cell replacement therapies for Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Neurturina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Encéfalo/embriología , Diferenciación Celular , Linaje de la Célula , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/metabolismo , Fenotipo , Células Madre/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 293(6): R2400-11, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17855492

RESUMEN

The cellular distribution of the NH2-terminal electrogenic Na+-HCO3(-) cotransporter (NBCe1) variants NBCe1-A and NBCe1-B has been investigated in rat kidney and submandibular gland (SMG) under physiological conditions and after systemic acid-base perturbations. Moreover, the in vivo data were complemented in vitro by using an immortalized cell line derived from the S1 segment of the proximal tubule (PT) of normotensive Wistar-Kyoto rats (WKPT-0293 Cl.2). NBCe1-A was basolaterally localized in PT cells, whereas NBCe1-B exhibited intracellular and basolateral distribution. SMG showed transcript and protein expression for NBCe1-A and NBCe1-B. NBCe1-B was basolaterally localized in duct cells; NBCe1-A was found intracellularly in salivary striated ducts and apically in main duct cells. Acute metabolic acidosis significantly increased cells that showed basolateral NBCe1-A in the PT, indicating increased HCO3(-) reabsorption, and significantly decreased cells that exhibited basolateral NBCe1-B in the salivary ducts, suggesting decreased HCO3(-) secretion. Chronic acidosis had no effect on NBCe1 distribution in PT but significantly increased the percentage of cells with basolateral NBCe1-A in salivary striated duct cells, suggesting increased HCO3(-) reabsorption. In contrast, chronic alkalosis caused adaptive redistribution of NBCe1-A and NBCe1-B in renal PT, favoring decreased HCO3(-) reabsorption. In vitro, WKPT-0293 Cl.2 cells expressed key acid-base transporters. Extracellular alkalosis downregulated NBCe1-A protein. WKPT-0293 Cl.2 cells are therefore a useful model to study renal acid-base regulation in vitro. The results propose redistribution of the transporters as a potential posttranslational regulation modus during acid-base disturbances. Moreover, the data demonstrate that renal PT and salivary duct epithelia respond to acid-base disturbances by an opposite redistribution pattern for NBCe1-A and NBCe1-B, reflecting specialized functions as the HCO3(-)-reabsorbing and HCO3(-)-secreting epithelium, respectively.


Asunto(s)
Desequilibrio Ácido-Base/metabolismo , Túbulos Renales Proximales/metabolismo , Conductos Salivales/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Adaptación Fisiológica , Animales , Concentración de Iones de Hidrógeno , Masculino , Ratas , Ratas Wistar , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...