Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37947420

RESUMEN

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Disbiosis
2.
Front Microbiol ; 14: 1264877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886057

RESUMEN

Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.

3.
ISME J ; 16(7): 1683-1693, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35273372

RESUMEN

Environmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.e., phage tail-like particles. Little is known about the receptors for these tailocins especially among phylogenetically closely related species. Here, we studied the interaction between an R-tailocin from Pseudomonas protegens CHA0 and a targeted kin, Pseudomonas protegens Pf-5. Using genome-wide transposon insertion sequencing, we identified that lipopolysaccharides are involved in the sensitivity of Pf-5 towards the tailocin of CHA0. By generating Pf-5 lipopolysaccharide mutants and exposing them to extracted tailocin, we specified the two O-antigenic polysaccharides (O-PS) targeted by the tailocin. We affirmed the role of these O-PS through competition assays in vitro as well as in insects. Further, we demonstrate that O-PS are double-edge swords that are responsible for the sensitivity of P. protegens towards tailocins and phages produced by their kin, but shield bacteria from the immune system of the insect. Our results shed light on the trade-off that bacteria are confronted with, where specific O-PS decorations can both be of benefit or disadvantage depending on the host environment and its bacterial inhabitants.


Asunto(s)
Bacteriófagos , Antígenos O , Bacteriófagos/genética , Plantas/microbiología , Pseudomonas/genética
4.
Curr Biol ; 31(5): 1012-1028.e7, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33508217

RESUMEN

Plants restrict immune responses to vulnerable root parts. Spatially restricted responses are thought to be necessary to avoid constitutive responses to rhizosphere microbiota. To directly demonstrate the importance of spatially restricted responses, we expressed the plant flagellin receptor (FLS2) in different tissues, combined with fluorescent defense markers for immune readouts at cellular resolution. Our analysis distinguishes responses appearing cell autonomous from apparently non-cell-autonomous responses. It reveals lignification as a general immune response, contrasting suberization. Importantly, our analysis divides the root meristem into a central zone refractory to FLS2 expression and a cortex that is sensitized by FLS2 expression, causing meristem collapse upon stimulation. Meristematic epidermal expression generates super-competent lines that detect native bacterial flagellin and bypass the weak or absent response to commensals, providing a powerful tool for studying root immunity. Our manipulations and readouts demonstrate incompatibility of meristematic activity and defense and the importance of cell-resolved studies of plant immune responses.


Asunto(s)
Bacterias/inmunología , Meristema/inmunología , Meristema/microbiología , Inmunidad de la Planta , Plantas/inmunología , Plantas/microbiología , Proteínas de Arabidopsis , Proteínas Quinasas
5.
Commun Biol ; 4(1): 87, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469108

RESUMEN

Interference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes. Using live-cell imaging, we evidence that R-tailocins are produced at the cell center, transported to the cell poles and ejected by explosive cell lysis. This enables their dispersal over several tens of micrometers to reach targeted cells. We visualize R-tailocin-mediated competition dynamics between closely-related Pseudomonas strains at the single-cell level, both in non-induced condition and upon artificial induction. We document the fatal impact of cellular self-sacrifice coupled to deployment of phage tail-like weaponry in the microenvironment of kin bacterial competitors, emphasizing the necessity for microscale assessment of microbial competitions.


Asunto(s)
Bacteriocinas/metabolismo , Interacciones Microbianas/fisiología , Pseudomonas/metabolismo , Antibacterianos/farmacología , Bacteriófagos/metabolismo , Pseudomonas/genética , Virión/metabolismo
6.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32079630

RESUMEN

We report the draft genome sequence of Pseudomonas sp. strain LD120, which was isolated from a brown macroalga in the Baltic Sea. The genome of this marine Pseudomonas protegens subgroup bacterium harbors biosynthetic gene clusters for toxic metabolites typically produced by members of this Pseudomonas subgroup, including 2,4-diacetylphloroglucinol, pyoluteorin, and rhizoxin analogs.

7.
ISME J ; 13(5): 1318-1329, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683920

RESUMEN

Pseudomonas protegens are multi-talented plant-colonizing bacteria that suppress plant pathogens and stimulate plant defenses. In addition, they are capable of invading and killing agriculturally important plant pest insects that makes them promising candidates for biocontrol applications. Here we assessed the role of type VI secretion system (T6SS) components of type strain CHA0 during interaction with larvae of the cabbage pest Pieris brassicae. We show that the T6SS core apparatus and two VgrG modules, encompassing the respective T6SS spikes (VgrG1a and VgrG1b) and associated effectors (RhsA and Ghh1), contribute significantly to insect pathogenicity of P. protegens in oral infection assays but not when bacteria are injected directly into the hemolymph. Monitoring of the colonization levels of P. protegens in the gut, hemolymph, and excrements of the insect larvae revealed that the invader relies on T6SS and VgrG1a module function to promote hemocoel invasion. A 16S metagenomic analysis demonstrated that T6SS-supported invasion by P. protegens induces significant changes in the insect gut microbiome affecting notably Enterobacteriaceae, a dominant group of the commensal gut bacteria. Our study supports the concept that pathogens deploy T6SS-based strategies to disrupt the commensal microbiota in order to promote host colonization and pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Insectos/microbiología , Pseudomonas/fisiología , Sistemas de Secreción Tipo VI/metabolismo , Animales , Proteínas Bacterianas/genética , Conducta Alimentaria , Insectos/fisiología , Larva/microbiología , Larva/fisiología , Pseudomonas/genética , Simbiosis , Sistemas de Secreción Tipo VI/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA