Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Clin Invest ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352749

RESUMEN

Tumor-associated macrophages and microglia (TAMs) are critical for tumor progression and therapy resistance in glioblastoma (GBM), a type of incurable brain cancer. We previously identified lysyl oxidase (LOX) and olfactomedin like-3 (OLFML3) as essential macrophage and microglia chemokines, respectively, in GBM. Here, single-cell transcriptomics and multiplex sequential immunofluorescence followed by functional studies demonstrate that macrophages negatively correlate with microglia in the GBM tumor microenvironment. LOX inhibition in PTEN-deficient GBM cells upregulates OLFML3 expression via the NF-κB-PATZ1 signaling pathway, inducing a compensatory increase of microglia infiltration. Dual targeting macrophages and microglia via inhibition of LOX and the CLOCK-OLFML3 axis generates potent anti-tumor effects and offers a complete tumor regression in more than 60% of animals when combined with anti-PD1 therapy in PTEN-deficient GBM mouse models. Thus, our findings provide a translational triple therapeutic strategy for this lethal disease.

2.
Neuro Oncol ; 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39427326

RESUMEN

The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with immunosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implications, we aim to prioritize agents in this category of therapeutics for glioblastoma.

4.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-39133578

RESUMEN

Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.


Asunto(s)
Epigénesis Genética , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Regulación Neoplásica de la Expresión Génica
5.
Neuro Oncol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126294

RESUMEN

BACKGROUND: Human gliomas are classified using isocitrate dehydrogenase (IDH) status as a prognosticator; however, the influence of genetic differences and treatment effects on ensuing immunity remains unclear. METHODS: In this study, we used sequential single-cell transcriptomics on 144,678 and spectral cytometry on over two million immune cells encompassing 48 human gliomas to decipher their immune landscape. RESULTS: We identified 22 distinct immune cell types that contribute to glioma immunity. Specifically, brain-resident microglia (MG) were reduced with a concomitant increase in CD8+ T lymphocytes during glioma recurrence independent of IDH status. In contrast, IDH-wild-type-associated patterns, such as an abundance of antigen-presenting cell-like MG and cytotoxic CD8+ T cells, were observed. Beyond elucidating the differences in IDH, relapse, and treatment-associated immunity, we discovered novel inflammatory MG subpopulations expressing granulysin, a cytotoxic peptide, which is otherwise expressed in lymphocytes only. Furthermore, we provide a robust genomic framework for defining macrophage polarization beyond M1/M2 paradigm and reference signatures of glioma-specific tumor immune microenvironment (termed Glio-TIME-36) for deconvoluting transcriptomic datasets. CONCLUSIONS: This study provides advanced optics of the human pan-glioma immune contexture as a valuable guide for translational and clinical applications.

6.
J Clin Invest ; 134(20)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207859

RESUMEN

Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the BVax (B cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aimed to characterize the antigenic reactivity of BVax-derived Abs and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and samples from patients with GBM. Our investigations revealed that BVax distributed throughout the GBM tumor microenvironment and then differentiated into Ab-producing plasmablasts. Proteomics analyses indicated that the Abs produced by BVax had unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these Abs inhibited critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived Abs for patients with GBM, pointing toward a novel direction for GBM immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/patología , Humanos , Animales , Ratones , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Linfocitos B/inmunología , Linfocitos B/patología , Microambiente Tumoral/inmunología , Movimiento Celular , Vacunas contra el Cáncer/inmunología , Femenino , Inmunoterapia , Anticuerpos Antineoplásicos/inmunología , Anticuerpos Antineoplásicos/farmacología , Masculino
7.
J Clin Invest ; 134(19)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137048

RESUMEN

Despite being the leading cause of cancer-related childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole-transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapeutic strategy that could be applied to multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher IFN signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia (MG) population designated MG-Act in BRAF-fused, MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. T cell immunoglobulin and mucin domain 3 (TIM3) was expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain vasculature. TIM3 expression became upregulated on immune cells in the PA microenvironment, and anti-TIM3 reprogrammed ex vivo immune cells from human PAs to a proinflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven, low-grade gliomas, anti-TIM3 treatment increased median survival over IgG- and anti-PD-1-treated mice. Single-cell RNA-Seq data during the therapeutic window of anti-TIM3 revealed enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 was abrogated in mice on the CX3CR1 MG-KO background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade, MAPK-driven gliomas.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Receptor 2 Celular del Virus de la Hepatitis A , Proteínas Proto-Oncogénicas B-raf , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas B-raf/genética , Astrocitoma/genética , Astrocitoma/inmunología , Astrocitoma/patología , Astrocitoma/terapia , Astrocitoma/metabolismo , Niño , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Femenino , Microambiente Tumoral/inmunología , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Glioma/inmunología , Glioma/genética , Glioma/patología , Glioma/metabolismo , Glioma/terapia
8.
Neuro Oncol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028616

RESUMEN

BACKGROUND: Glioblastoma is a highly aggressive brain cancer that is resistant to conventional immunotherapy strategies. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody (FcE-aCTLA-4), has shown durable activity in "cold" and immunotherapy-refractory cancers. METHOD: We evaluated the efficacy and immune microenvironment phenotype of a mouse analogue of FcE-aCTLA-4 in treatment-refractory preclinical models of glioblastoma, both as a monotherapy and in combination with doxorubicin delivered via low-intensity pulsed ultrasound and microbubbles (LIPU/MB). Additionally, we studied 4 glioblastoma patients treated with doxorubicin, anti-PD-1 with concomitant LIPU/MB to investigate the novel effect of doxorubicin modulating FcγR expressions in tumor associated macrophages/microglia (TAMs). RESULTS: FcE-aCTLA-4 demonstrated high-affinity binding to FcγRIV, the mouse ortholog of human FcγRIIIA, which was highly expressed in TAMs in human glioblastoma, most robustly at diagnosis. Notably, FcE-aCTLA-4 mediated selective depletion of intra-tumoral regulatory T cells (Tregs) via TAM-mediated phagocytosis, while sparing peripheral Tregs. Doxorubicin, a chemotherapeutic drug with immunomodulatory functions, was found to upregulate FcγRIIIA on TAMs in glioblastoma patients who received doxorubicin and anti-PD-1 with concomitant LIPU/MB. In murine models of immunotherapy-resistant gliomas, a combinatorial regimen of FcE-aCTLA-4, anti-PD-1, and doxorubicin with LIPU/MB, achieved a 90% cure rate, that was associated robust infiltration of activated CD8+ T cells and establishment of immunological memory as evidenced by rejection upon tumor rechallenge. CONCLUSION: Our findings demonstrate that FcE-aCTLA-4 promotes robust immunomodulatory and anti-tumor effects in murine gliomas and is significantly enhanced when combined with anti-PD-1, doxorubicin, and LIPU/MB. We are currently investigating this combinatory strategy in a clinical trial (clinicaltrials.gov NCT05864534).

9.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941297

RESUMEN

STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.


Asunto(s)
Glioblastoma , Proteínas de la Membrana , Microambiente Tumoral , Animales , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Microambiente Tumoral/inmunología , Ratones , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/agonistas , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética
10.
Cells ; 13(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38786045

RESUMEN

Macrophages and microglia are professional phagocytes that sense and migrate toward "eat-me" signals. The role of phagocytic cells is to maintain homeostasis by engulfing senescent or apoptotic cells, debris, and abnormally aggregated macromolecules. Usually, dying cells send out "find-me" signals, facilitating the recruitment of phagocytes. Healthy cells can also promote or inhibit the phagocytosis phenomenon of macrophages and microglia by tuning the balance between "eat-me" and "don't-eat-me" signals at different stages in their lifespan, while the "don't-eat-me" signals are often hijacked by tumor cells as a mechanism of immune evasion. Using a combination of bioinformatic analysis and spatial profiling, we delineate the balance of the "don't-eat-me" CD47/SIRPα and "eat-me" CALR/STC1 ligand-receptor interactions to guide therapeutic strategies that are being developed for glioblastoma sequestered in the central nervous system (CNS).


Asunto(s)
Antígeno CD47 , Calreticulina , Glioblastoma , Fagocitos , Fagocitosis , Humanos , Glioblastoma/patología , Glioblastoma/terapia , Glioblastoma/metabolismo , Antígeno CD47/metabolismo , Fagocitos/metabolismo , Calreticulina/metabolismo , Receptores Inmunológicos/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Microglía/metabolismo , Microglía/patología , Muerte Celular , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Antígenos de Diferenciación
11.
Nat Genet ; 56(6): 1121-1133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760638

RESUMEN

Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.


Asunto(s)
Heterogeneidad Genética , Neoplasias Meníngeas , Meningioma , Meningioma/genética , Meningioma/patología , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Análisis de la Célula Individual , Proliferación Celular/genética , Recurrencia Local de Neoplasia/genética , Transducción de Señal/genética , Línea Celular Tumoral , Transcriptoma
12.
STAR Protoc ; 5(2): 103079, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38795354

RESUMEN

Although myeloid-derived immune cells can be dispersed throughout the tumor microenvironment (TME), anti-tumor effector cells are confined to the perivascular space. Here, we present a protocol to quantify immune cell distribution from tumor vasculature to its glioma microenvironment on sequential immunofluorescence multiplex images. We describe steps for sequential immunofluorescence multiplex staining, image generation, and storage. We then detail the procedures for tissue, vessel, and nuclei segmentation; cell phenotyping; data extraction; and training using RStudio and Spyder.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Glioma , Microambiente Tumoral , Microambiente Tumoral/inmunología , Glioma/inmunología , Glioma/patología , Glioma/irrigación sanguínea , Humanos , Técnica del Anticuerpo Fluorescente/métodos , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos , Ratones
13.
Cancer Discov ; 14(10): 1823-1837, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-38742767

RESUMEN

Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here, we report that NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor-initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival. Significance: There are no effective systemic therapies to treat meningiomas, and meningioma stem cells are poorly understood. Here, we report perivascular NOTCH3+ stem cells to drive meningioma tumorigenesis and resistance to radiotherapy. Our results identify a conserved mechanism and a therapeutic vulnerability to treat meningiomas that are resistant to standard interventions.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Receptor Notch3 , Meningioma/patología , Meningioma/radioterapia , Meningioma/genética , Meningioma/metabolismo , Receptor Notch3/metabolismo , Receptor Notch3/genética , Animales , Ratones , Humanos , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/genética , Carcinogénesis , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Células Madre Neoplásicas/patología , Tolerancia a Radiación , Perros
14.
Nat Commun ; 15(1): 3728, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697991

RESUMEN

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Radiocirugia , Radiocirugia/métodos , Humanos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Masculino , Femenino , Persona de Mediana Edad , Anciano , Melanoma/patología , Adulto , Resultado del Tratamiento , Carga Tumoral , Anciano de 80 o más Años , Insuficiencia del Tratamiento , Estudios Retrospectivos
15.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730704

RESUMEN

Meningioma classification and treatment have evolved over the past eight decades. Since Bailey, Cushing, and Eisenhart's description of meningiomas in the 1920s and 1930s, there have been continual advances in clinical stratification by histopathology, radiography and, most recently, molecular profiling, to improve prognostication and predict response to therapy. Precise and accurate classification is essential to optimizing management for patients with meningioma, which involves surveillance imaging, surgery, primary or adjuvant radiotherapy, and consideration for clinical trials. Currently, the World Health Organization (WHO) grade, extent of resection (EOR), and patient characteristics are used to guide management. While these have demonstrated reliability, a substantial number of seemingly benign lesions recur, suggesting opportunities for improvement of risk stratification. Furthermore, the role of adjuvant radiotherapy for grade 1 and 2 meningioma remains controversial. Over the last decade, numerous studies investigating the molecular drivers of clinical aggressiveness have been reported, with the identification of molecular markers that carry clinical implications as well as biomarkers of radiotherapy response. Here, we review the historical context of current practices, highlight recent molecular discoveries, and discuss the challenges of translating these findings into clinical practice.

16.
Ann Case Rep ; 9(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606301

RESUMEN

Immunoglobulin G4-related disease (IgG4-RD) is a rare autoimmune disorder with an unknown etiology. Using orthogonal immune profiling and automated sequential multiplexing, we found an enhanced frequency of activated circulating B cells, antigen-presenting myeloid cells in peripheral blood, and a distinct distribution of immune cells within the CNS lesions. Prohibitin-expressing CD138+ plasma B cells and CD11c+ dendritic cells have been found interacting with T cells resulting in irmnune cell activation within the lesion. The data implicate prohibitin as a potential triggering antigen in the pathogenesis of IgG4-RD and shed light on the cellular dynamics and interactions driving IgG4-RD in the central nervous system, emphasizing the need for further studies corroborating these findings.

18.
Proc Natl Acad Sci U S A ; 121(8): e2306973121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346200

RESUMEN

Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Nanoestructuras , Humanos , Glioblastoma/patología , Inmunoterapia/métodos , Nanopartículas/uso terapéutico , Nanopartículas/química , Nanotecnología , Nanoestructuras/química , Microambiente Tumoral , Neoplasias Encefálicas/patología
20.
JCI Insight ; 9(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193532

RESUMEN

Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Glioma , Animales , Humanos , Calidad de Vida , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Glioma/complicaciones , Glioma/tratamiento farmacológico , Sistema Inmunológico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...