Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sport Health Sci ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37925072

RESUMEN

Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTdiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/ resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.

2.
Eur J Prev Cardiol ; 30(15): 1634-1651, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37154363

RESUMEN

AIMS: To provide a quantitative analysis of eHealth-supported interventions on health outcomes in cardiovascular rehabilitation (CR) maintenance (phase III) in patients with coronary artery disease (CAD) and to identify effective behavioural change techniques (BCTs). METHODS AND RESULTS: A systematic review was conducted (PubMed, CINAHL, MEDLINE, and Web of Science) to summarize and synthesize the effects of eHealth in phase III maintenance on health outcomes including physical activity (PA) and exercise capacity, quality of life (QoL), mental health, self-efficacy, clinical variables, and events/rehospitalization. A meta-analysis following the Cochrane Collaboration guidelines using Review Manager (RevMan5.4) was performed. Analyses were conducted differentiating between short-term (≤6 months) and medium/long-term effects (>6 months). Effective behavioural change techniques were defined based on the described intervention and coded according to the BCT handbook. Fourteen eligible studies (1497 patients) were included. eHealth significantly promoted PA (SMD = 0.35; 95%CI 0.02-0.70; P = 0.04) and exercise capacity after 6 months (SMD = 0.29; 95%CI 0.05-0.52; P = 0.02) compared with usual care. Quality of life was higher with eHealth compared with care as usual (SMD = 0.17; 95%CI 0.02-0.32; P = 0.02). Systolic blood pressure decreased after 6 months with eHealth compared with care as usual (SMD = -0.20; 95%CI -0.40-0.00; P = 0.046). There was substantial heterogeneity in the adapted BCTs and type of intervention. Mapping of BCTs revealed that self-monitoring of behaviour and/or goal setting as well as feedback on behaviour were most frequently included. CONCLUSION: eHealth in phase III CR is effective in stimulating PA and improving exercise capacity in patients with CAD while increasing QoL and decreasing systolic blood pressure. Currently, data of eHealth effects on morbidity, mortality, and clinical outcomes are scarce and should be investigated in future studies. REGISTRATION: PROSPERO: CRD42020203578.


KEY FINDINGS: • eHealth interventions in cardiovascular rehabilitation maintenance may be used to increase physical activity and exercise capacity as well as quality of life while reducing systolic blood pressure.• Effective behavioural change techniques used in eHealth interventions may include self-monitoring of behaviour, goal setting, and feedback on behaviour; thus, future studies are needed to define effective eHealth components based on behavioural change theories and associated behavioural change techniques to assist patients with coronary artery disease.


• This paper reviews the impact of eHealth-supported interventions on health outcomes during cardiovascular rehabilitation maintenance phase III for patients with coronary artery disease, with a meta-analysis performed to differentiate between short-term (≤6 months) and medium/long-term effects (>6 months).


Asunto(s)
Rehabilitación Cardiaca , Enfermedad de la Arteria Coronaria , Telemedicina , Humanos , Rehabilitación Cardiaca/métodos , Calidad de Vida , Ejercicio Físico/fisiología , Telemedicina/métodos
3.
J Appl Physiol (1985) ; 134(4): 799-809, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36759165

RESUMEN

Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels. Twelve healthy participants (33.0 ± 12.0 yr, 7 women) performed a 20-min whole body EMS training and a time- and intensity-matched whole body circuit training (CT) in random order. Blood samples were drawn pre-/posttraining and at 1.5, 3, 24, 48, and 72 h to determine creatine kinase (CK) and miRNA-21-5p, -126-3p, -133a-3p, -146a-5p, -206-3p, -222-3p, and -499a-5p levels. Muscular exertion was determined using an isometric strength test, and muscle soreness/pain was assessed by questionnaire. EMS participants reported higher muscle soreness 48 and 72 h postexercise and mean CK levels after EMS increased compared with CT at 48 and 72 h (time × group P ≤ 0.01). The EMS session induced a significant elevation of myomiR-206 and -133a levels starting at 1.5 and 3 h after exercise. Both miRNAs remained elevated for 72 h with significant differences between 24 and 72 h (time × group P ≤ 0.0254). EMS did not induce changes in cardiovascular miRNAs and no elevation in any miRNA was detected following CT. Time-course analysis of muscle damage marker CK and c-miR-133a and -206 levels did not suggest a common scheme (P ≥ 0.277). We conclude that a single EMS session induces specific long-lasting changes of miR-206 and miR-133 involved in muscle proliferation and differentiation. A single EMS session does not affect primary cardiovascular miRNA-21-5p, -126-3p, -146a-5p, and -222-3p levels.NEW & NOTEWORTHY Our study describes the long-term effects of electromyostimulation (EMS) on circulating miRNA levels. The observed increase of functional myomiR-206 and -133a levels over 72 h suggests long-lasting effects on muscle proliferation and differentiation, whereas cardiovascular miRNAs appear unaffected. Our findings suggest that circulating miRNAs provide useful insight into muscle regeneration processes after EMS and may thus be used to optimize EMS training effects.


Asunto(s)
MicroARNs , Humanos , Femenino , MicroARNs/genética , Mialgia , Estudios Cruzados , Músculo Esquelético , Ejercicio Físico/fisiología
4.
Front Nutr ; 9: 1051918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324621

RESUMEN

[This corrects the article DOI: 10.3389/fnut.2022.804046.].

5.
Front Nutr ; 9: 804046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284446

RESUMEN

Background: The use of probiotics in sports has been growing in recent years, as up to 50% of athletes suffer from training- and performance-limiting gastrointestinal (GI) problems. Moreover, repeated exhaustive exercise and high training loads may lead to a transiently depressed immune function, associated with an increased risk of upper respiratory tract infection (URTI). Aim: To provide a qualitative analysis of probiotic effects on URTI, GI symptoms and the immune system in healthy individuals under consideration of performance level as main classifier. Methods: A systematic review of the literature was conducted (PubMed, SPORTDiscus with Full Text, Web of Science) to analyze the effects of probiotics in athletes and healthy active individuals on GI problems, URTI, and the immune system. A qualitative synthesis with performance level and treatment duration as main classifiers was performed. Results: Of 41 eligible studies, 24 evaluated the effects of probiotic supplements in athletes, 10 in recreationally active individuals and 7 in healthy untrained adults. Large heterogeneity was observed in terms of probiotic strains, mode of delivery, performance level, treatment duration and outcome assessment. Overall, studies provided inconsistent observations. Conclusion: The effects of probiotics on immune system, URTI, and GI symptoms in athletes, healthy adults and recreationally active individuals remain inconclusive. Based on the analyzed studies and identified parameters, this article provides suggestions to align future research on the effects of probiotics in exercise. Systematic Review Registration: PROSPERO, identifier: CRD42021245840.

6.
J Cachexia Sarcopenia Muscle ; 12(4): 843-854, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34105256

RESUMEN

BACKGROUND: Sarcopenia, defined as loss of muscle mass, quality, and function, is associated with reduced quality of life and adverse health outcomes including disability and mortality. Electromyostimulation (EMS) has been suggested to attenuate the loss of muscle mass and function in elderly, sedentary individuals. This study aimed to investigate the effects of EMS on muscle strength and function during 4 weeks of inpatient medical rehabilitation. METHODS: Patients receiving 4 weeks of inpatient medical rehabilitation diagnosed with sarcopenia using bioimpedance analysis were eligible to participate. One hundred and thirty-four patients (55.7 ± 7.9 years, 25.4% female) were randomly assigned to three groups: whole-body (WB) EMS (n = 48): stimulation of major muscle groups (pectoral muscles, latissimus, trapezius, abdominals, upper arm and leg, lower back muscles, gluteal muscles, and thighs); part-body (PB) EMS (n = 42): stimulation of leg muscles including gluteal muscles and thighs; and control group (CG, n = 44). All participants performed six 20 min training sessions including dynamic movements (squats, lunges, biceps curl, chest press, butterfly reverse, reverse lunges, standing diagonal crunches, etc.) with superimposed (WB-, PB-) EMS or without EMS (CG) in addition to the standard rehabilitation programme. Primary outcome variables included muscle function assessed by chair rise test and 6 min walking test as well as muscle strength (isometric grip strength, leg, arm, and back extension). RESULTS: Primary outcome variables chair rise test and leg extension improved significantly (P = 0.001, η2  = 0.06 and P = 0.008, η2  = 0.06; EMS vs. CG) in that chair rise test results increased in WB-EMS from 5 (4; 7) to 7 (5; 9), in PB-EMS from 5 (5; 7) to 7 (6; 8), and in CG from 6 (4; 7) to 7 (5; 8) repetitions. Knee extension increased in WB-EMS from 692.3 ± 248.6 to 831.7 ± 298.7 N, in PB-EMS from 682.8 ± 257.8 to 790.2 ± 270.2 N, and in CG from 638.5 ± 236.9 to 703.2 ± 218.6 N. No adverse events or side effects occurred. CONCLUSIONS: We conclude that EMS might be an additional training option to improve muscle function and strength in sarcopenic patients during a 4 week rehabilitation programme. EMS provides greater functional and strength improvements compared with standard treatment with additional potential health benefits for sarcopenic cardiac and orthopaedic patients.


Asunto(s)
Terapia por Estimulación Eléctrica , Sarcopenia , Anciano , Femenino , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético , Calidad de Vida , Sarcopenia/diagnóstico , Sarcopenia/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...