Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 23(1): 460, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208717

RESUMEN

BACKGROUND: Double reading (DR) in screening mammography increases cancer detection and lowers recall rates, but has sustainability challenges due to workforce shortages. Artificial intelligence (AI) as an independent reader (IR) in DR may provide a cost-effective solution with the potential to improve screening performance. Evidence for AI to generalise across different patient populations, screening programmes and equipment vendors, however, is still lacking. METHODS: This retrospective study simulated DR with AI as an IR, using data representative of real-world deployments (275,900 cases, 177,882 participants) from four mammography equipment vendors, seven screening sites, and two countries. Non-inferiority and superiority were assessed for relevant screening metrics. RESULTS: DR with AI, compared with human DR, showed at least non-inferior recall rate, cancer detection rate, sensitivity, specificity and positive predictive value (PPV) for each mammography vendor and site, and superior recall rate, specificity, and PPV for some. The simulation indicates that using AI would have increased arbitration rate (3.3% to 12.3%), but could have reduced human workload by 30.0% to 44.8%. CONCLUSIONS: AI has potential as an IR in the DR workflow across different screening programmes, mammography equipment and geographies, substantially reducing human reader workload while maintaining or improving standard of care. TRIAL REGISTRATION: ISRCTN18056078 (20/03/2019; retrospectively registered).


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Mamografía , Inteligencia Artificial , Estudios Retrospectivos , Detección Precoz del Cáncer , Tamizaje Masivo
2.
ChemSusChem ; 15(18): e202200958, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35762102

RESUMEN

Molecular solar thermal (MOST) systems combine solar energy conversion, storage, and release in simple one-photon one-molecule processes. Here, we address the electrochemically triggered energy release from an azothiophene-based MOST system by photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and density functional theory (DFT). Specifically, the electrochemically triggered back-reaction from the energy rich (Z)-3-cyanophenylazothiophene to its energy lean (E)-isomer using highly oriented pyrolytic graphite (HOPG) as the working electrode was studied. Theory predicts that two reaction channels are accessible, an oxidative one (hole-catalyzed) and a reductive one (electron-catalyzed). Experimentally it was found that the photo-isomer decomposes during hole-catalyzed energy release. Electrochemically triggered back-conversion was possible, however, through the electron-catalyzed reaction channel. The reaction rate could be tuned by the electrode potential within two orders of magnitude. It was shown that the MOST system withstands 100 conversion cycles without detectable decomposition of the photoswitch. After 100 cycles, the photochemical conversion was still quantitative and the electrochemically triggered back-reaction reached 94 % of the original conversion level.

3.
Radiol Artif Intell ; 3(2): e190181, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33937856

RESUMEN

PURPOSE: To explore whether generative adversarial networks (GANs) can enable synthesis of realistic medical images that are indiscernible from real images, even by domain experts. MATERIALS AND METHODS: In this retrospective study, progressive growing GANs were used to synthesize mammograms at a resolution of 1280 × 1024 pixels by using images from 90 000 patients (average age, 56 years ± 9) collected between 2009 and 2019. To evaluate the results, a method to assess distributional alignment for ultra-high-dimensional pixel distributions was used, which was based on moment plots. This method was able to reveal potential sources of misalignment. A total of 117 volunteer participants (55 radiologists and 62 nonradiologists) took part in a study to assess the realism of synthetic images from GANs. RESULTS: A quantitative evaluation of distributional alignment shows 60%-78% mutual-information score between the real and synthetic image distributions, and 80%-91% overlap in their support, which are strong indications against mode collapse. It also reveals shape misalignment as the main difference between the two distributions. Obvious artifacts were found by an untrained observer in 13.6% and 6.4% of the synthetic mediolateral oblique and craniocaudal images, respectively. A reader study demonstrated that real and synthetic images are perceptually inseparable by the majority of participants, even by trained breast radiologists. Only one out of the 117 participants was able to reliably distinguish real from synthetic images, and this study discusses the cues they used to do so. CONCLUSION: On the basis of these findings, it appears possible to generate realistic synthetic full-field digital mammograms by using a progressive GAN architecture up to a resolution of 1280 × 1024 pixels.Supplemental material is available for this article.© RSNA, 2020.

4.
Chemistry ; 26(60): 13730-13737, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32330338

RESUMEN

A series of substituted azothiophenes was prepared and investigated toward their isomerization behavior. Compared to azobenzene (AB), the presented compounds showed red-shifted absorption and almost quantitative photoisomerization to their (Z) states. Furthermore, it was found that electron-withdrawing substitution on the phenyl moiety increases, while electron-donating substitution decreases the thermal half-lives of the (Z)-isomers due to higher or lower stabilization by a lone pair-π interaction. Additionally, computational analysis of the isomerization revealed that a pure singlet state transition state is unlikely in azothiophenes. A pathway via intersystem crossing to a triplet energy surface of lower energy than the singlet surface provided a better fit with experimental data of the (Z)→(E) isomerization. The insights gained in this study provide the necessary guidelines to design effective thiophenylazo-photoswitches for applications in photopharmacology, material sciences, or solar energy harvesting applications.

5.
Beilstein J Org Chem ; 16: 22-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31976013

RESUMEN

Multistate switches allow to drastically increase the information storage capacity and complexity of smart materials. In this context, unsymmetrical 1,3,5-tris(arylazo)benzenes - 'starazos' - which merge three photoswitches on one benzene ring, were successfully prepared. Two different synthetic strategies, one based on Baeyer-Mills reactions and the other based on Pd-catalyzed coupling reactions of arylhydrazides and aryl halides, followed by oxidation, were investigated. The Pd-catalyzed route efficiently led to the target compounds, unsymmetrical tris(arylazo)benzenes. These triple switches were preliminarily characterized in terms of their isomerization behavior using UV-vis and 1H NMR spectroscopy. The efficient synthesis of this new class of unsymmetrical tris(arylazo)benzenes opened new avenues to novel multistate switching materials.

6.
Angew Chem Int Ed Engl ; 59(1): 380-387, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31595575

RESUMEN

Azoheteroarene photoswitches have attracted attention due to their unique properties. We present the stationary photochromism and ultrafast photoisomerization mechanism of thiophenylazobenzene (TphAB). It demonstrates impressive fatigue resistance and photoisomerization efficiency, and shows favorably separated (E)- and (Z)-isomer absorption bands, allowing for highly selective photoconversion. The (Z)-isomer of TphAB adopts an unusual orthogonal geometry where the thiophenyl group is perfectly perpendicular to the phenyl group. This geometry is stabilized by a rare lone-pair⋅⋅⋅π interaction between the S atom and the phenyl group. The photoisomerization of TphAB occurs on the sub-ps to ps timescale and is governed by this interaction. Therefore, the adoption and disruption of the orthogonal geometry requires significant movement along the inversion reaction coordinates (CNN and NNC angles). Our results establish TphAB as an excellent photoswitch with versatile properties that expand the application possibilities of AB derivatives.

7.
EBioMedicine ; 48: 224-235, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31648981

RESUMEN

BACKGROUND: Despite treatment advances, there remains a significant risk of recurrence in ovarian cancer, at which stage it is usually incurable. Consequently, there is a clear need for improved patient stratification. However, at present clinical prognosticators remain largely unchanged due to the lack of reproducible methods to identify high-risk patients. METHODS: In high-grade serous ovarian cancer patients with advanced disease, we spatially define a tumour ecological balance of stromal resource and immune hazard using high-throughput image and spatial analysis of routine histology slides. On this basis an EcoScore is developed to classify tumours by a shift in this balance towards cancer-favouring or inhibiting conditions. FINDINGS: The EcoScore provides prognostic value stronger than, and independent of, known risk factors. Crucially, the clinical relevance of mutational burden and genomic instability differ under different stromal resource conditions, suggesting that the selective advantage of these cancer hallmarks is dependent on the context of stromal spatial structure. Under a high resource condition defined by a high level of geographical intermixing of cancer and stromal cells, selection appears to be driven by point mutations; whereas, in low resource tumours featured with high hypoxia and low cancer-immune co-localization, selection is fuelled by aneuploidy. INTERPRETATION: Our study offers empirical evidence that cancer fitness depends on tumour spatial constraints, and presents a biological basis for developing better assessments of tumour adaptive strategies in overcoming ecological constraints including immune surveillance and hypoxia.


Asunto(s)
Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/etiología , Diagnóstico por Imagen/métodos , Susceptibilidad a Enfermedades , Femenino , Humanos , Estimación de Kaplan-Meier , Mutación , Estadificación de Neoplasias , Neoplasias Ováricas/mortalidad , Pronóstico , Modelos de Riesgos Proporcionales
8.
Cancer Res ; 79(22): 5874-5883, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604713

RESUMEN

Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.


Asunto(s)
Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , Animales , Línea Celular Tumoral , Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Matriz Extracelular/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Fenotipo
9.
Chem Sci ; 10(31): 7418-7425, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31489164

RESUMEN

Multi-state photoswitchable compounds are highly attractive for application in data storage or multi-responsive materials. In this work, a trisazobenzene macrocycle capable of three-state isomerization is presented. The compound can be switched into each of the states with more than 70% of the isomer solely by light and heat as stimuli representing the first example for an oligo-azobenzene containing identical photochromic units which can be selectively adressed. Detailed spectroscopic, crystallographic, HPLC as well as computational investigations and the comparison to a less and a higher strained derivative revealed macrocyclic ring strain to be responsible for the compounds unique isomerization behavior.

10.
Chempluschem ; 84(8): 1145-1148, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31943965

RESUMEN

The performance of molecular solar thermal energy storage systems (MOST) depends amongst others on the amount of energy stored. Azobenzenes have been investigated as high-potential materials for MOST applications. In the present study it could be shown that intermolecular attractive London dispersion interactions stabilize the (E)-isomer in bisazobenzene that is linked by different alkyl bridges. Differential scanning calorimetry (DSC) measurements revealed, that this interaction leads to an increased storage energy per azo-unit of more than 3 kcal/mol compared to the parent azobenzene. The origin of this effect has been supported by computation as well as X-ray analysis. In the solid state structure attractive London dispersion interactions between the C-H of the alkyl bridge and the π-system of the azobenzene could be clearly assigned. This concept will be highly useful in designing more effective MOST systems in the future.

11.
Org Lett ; 20(22): 7034-7038, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30362764

RESUMEN

A stereoselective domino inverse electron-demand Diels-Alder/amine group transfer reaction catalyzed by a bidentate Lewis acid provides 1-amino-1,2-dihydronaphthalenes, a core structure in many bioactive compounds. A concerted mechanism is proposed based on experimental studies as well as DFT computations demonstrating a new general reactivity scheme. The broad scope of the reaction was evaluated by variation of all three starting compounds, phthalazines, aldehydes, and amines. Scalability was demonstrated by a gram scale reaction without diminished yield.

12.
Nat Commun ; 9(1): 3917, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254278

RESUMEN

How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.


Asunto(s)
Proteína BRCA1/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Microambiente Tumoral/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA1/metabolismo , Plasticidad de la Célula/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Linfocitos/metabolismo , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Pronóstico , Células del Estroma/metabolismo
13.
J Phys Chem Lett ; 9(16): 4776-4781, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30063355

RESUMEN

Continuous irradiation of the thermodynamically stable ( Z, Z)-cyclobisazobenzene does not lead to accumulation of a ( Z, E) or ( E, E) isomer as one might expect. Our combined experimental and computational investigation reveals that Z → E photoisomerization still takes place on an ultrafast time scale but induces large ring strain in the macrocycle, which leads to a very fast thermal back-isomerization, preventing photostationary accumulation of ( E)-isomers.

14.
Beilstein J Org Chem ; 14: 1238-1243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977392

RESUMEN

The understanding and control of the light-induced isomerization of azobenzenes as one of the most important classes of molecular switches is crucial for the design of light-responsive materials using this entity. Herein, we present the stabilization of metastable (Z)-azobenzenes by London dispersion interactions, even in the presence of comparably stronger hydrogen bonds in various solvents. The Z→E isomerization rates of several N-substituted 4,4'-bis(4-aminobenzyl)azobenzenes were measured. An intramolecular stabilization was observed and explained by the interplay of intramolecular amide and carbamate hydrogen bonds as well as London dispersion interactions. Whereas in toluene, 1,4-dioxane and tert-butyl methyl ether the hydrogen bonds dominate, the variation in stabilization of the different substituted azobenzenes in dimethyl sulfoxide can be rationalized by London dispersion interactions. These findings were supported by conformational analysis and DFT computations and reveal low-energy London dispersion forces to be a significant factor, even in the presence of hydrogen bonds.

15.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754820

RESUMEN

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análisis por Conglomerados , Femenino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Pérdida de Heterocigocidad , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/inmunología , Polimorfismo de Nucleótido Simple , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Secuenciación Completa del Genoma , Adulto Joven
16.
Beilstein J Org Chem ; 14: 618-625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623123

RESUMEN

We report an air-stable bisboron complex as an efficient catalyst for the inverse electron-demand Diels-Alder (IEDDA) reaction of 1,2-diazine as well as 1,2,4,5-tetrazine. Its stability towards air and moisture was demonstrated by NMR studies enabling its application in organic transformations without glovebox. A one-pot procedure for its synthesis was developed starting from 1,2-bis(trimethylsilyl)benzene greatly enhancing its practicality. Comparative reactions were carried out to evaluate its catalytic activity in IEDDA reactions of diazine including phthalazine as well as 1,2,4,5-tetrazine.

17.
J Natl Cancer Inst ; 110(2)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859291

RESUMEN

Background: Despite increasing evidence supporting the clinical utility of immune infiltration in the estrogen receptor-negative (ER-) subtype, the prognostic value of immune infiltration for ER+ disease is not well defined. Methods: Quantitative immune scores of cell abundance and spatial heterogeneity were computed using a fully automated hematoxylin and eosin-stained image analysis algorithm and spatial statistics for 1178 postmenopausal patients with ER+ breast cancer treated with five years' tamoxifen or anastrozole. The prognostic significance of immune scores was compared with Oncotype DX 21-gene recurrence score (RS), PAM50 risk of recurrence (ROR) score, IHC4, and clinical treatment score, available for 963 patients. Statistical tests were two-sided. Results: Scores of immune cell abundance were not associated with recurrence-free survival. In contrast, high immune spatial scores indicating increased cell spatial clustering were associated with poor 10-year, early (0-5 years), and late (5-10 years) recurrence-free survival (Immune Hotspot: LR-χ2 = 14.06, P < .001, for 0-10 years; LR-χ2 = 6.24, P = .01, for 0-5 years; LR-χ2 = 7.89, P = .005, for 5-10 years). The prognostic value of spatial scores for late recurrence was similar to that of IHC4 and RS in both populations, but was not as strong as other tests in comparison for recurrence across 10 years. Conclusions: These results provide a missing link between tumor immunity and disease outcome in ER+ disease by examining tumor spatial architecture. The association between spatial scores and late recurrence suggests a lasting memory of protumor immunity that may impact disease progression and evolution of endocrine treatment resistance, which may be exploited for therapeutic advances.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos Infiltrantes de Tumor/inmunología , Recurrencia Local de Neoplasia/inmunología , Receptores de Estrógenos/análisis , Anciano , Anastrozol , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/química , Neoplasias de la Mama/tratamiento farmacológico , Supervivencia sin Enfermedad , Femenino , Humanos , Recuento de Linfocitos , Persona de Mediana Edad , Nitrilos/uso terapéutico , Factores de Riesgo , Tamoxifeno/uso terapéutico , Triazoles/uso terapéutico
18.
Front Oncol ; 7: 290, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250485

RESUMEN

Diffusion-weighted magnetic resonance imaging (DWI) enables non-invasive, quantitative staging of prostate cancer via measurement of the apparent diffusion coefficient (ADC) of water within tissues. In cancer, more advanced disease is often characterized by higher cellular density (cellularity), which is generally accepted to correspond to a lower measured ADC. A quantitative relationship between tissue structure and in vivo measurements of ADC has yet to be determined for prostate cancer. In this study, we establish a theoretical framework for relating ADC measurements with tissue cellularity and the proportion of space occupied by prostate lumina, both of which are estimated through automatic image processing of whole-slide digital histology samples taken from a cohort of six healthy mice and nine transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. We demonstrate that a significant inverse relationship exists between ADC and tissue cellularity that is well characterized by our model, and that a decrease of the luminal space within the prostate is associated with a decrease in ADC and more aggressive tumor subtype. The parameters estimated from our model in this mouse cohort predict the diffusion coefficient of water within the prostate-tissue to be 2.18 × 10-3 mm2/s (95% CI: 1.90, 2.55). This value is significantly lower than the diffusion coefficient of free water at body temperature suggesting that the presence of organelles and macromolecules within tissues can drastically hinder the random motion of water molecules within prostate tissue. We validate the assumptions made by our model using novel in silico analysis of whole-slide histology to provide the simulated ADC (sADC); this is demonstrated to have a significant positive correlation with in vivo measured ADC (r2 = 0.55) in our mouse population. The estimation of the structural properties of prostate tissue is vital for predicting and staging cancer aggressiveness, but prostate tissue biopsies are painful, invasive, and are prone to complications such as sepsis. The developments made in this study provide the possibility of estimating the structural properties of prostate tissue via non-invasive virtual biopsies from MRI, minimizing the need for multiple tissue biopsies and allowing sequential measurements to be made for prostate cancer monitoring.

19.
Oncotarget ; 7(44): 71123-71135, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27661102

RESUMEN

The tumor microenvironment is pivotal in influencing cancer progression and metastasis. Different cells co-exist with high spatial diversity within a patient, yet their combinatorial effects are poorly understood. We investigate the similarity of the tumor microenvironment of 192 local metastatic lesions in 61 ovarian cancer patients. An ecologically inspired measure of microenvironmental diversity derived from multiple metastasis sites is correlated with clinicopathological characteristics and prognostic outcome. We demonstrate a high accuracy of our automated analysis across multiple sites. A low level of similarity in microenvironmental composition is observed between ovary tumor and corresponding local metastases (stromal ratio r = 0.30, lymphocyte ratio r = 0.37). We identify a new measure of microenvironmental diversity derived from Shannon entropy that is highly predictive of poor overall (p = 0.002, HR = 3.18, 95% CI = 1.51-6.68) and progression-free survival (p = 0.0036, HR = 2.83, 95% CI = 1.41-5.7), independent of and stronger than clinical variables, subtype stratifications based on single cell types alone and number of sites. Although stromal influence in ovary tumors is known to have significant clinical implications, our findings reveal an even stronger impact orchestrated by diverse cell types. Quantitative histology-based measures can further enable objective selection of patients who are in urgent need of new therapeutic strategies such as combinatorial treatments targeting heterogeneous tumor microenvironment.


Asunto(s)
Cistadenocarcinoma Seroso/mortalidad , Neoplasias Ováricas/mortalidad , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Cistadenocarcinoma Seroso/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Pronóstico
20.
J Magn Reson Imaging ; 43(5): 1207-17, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26559017

RESUMEN

PURPOSE: To improve early diagnosis of prostate cancer to aid clinical decision-making. Diffusion-weighted magnetic resonance imaging (DW-MRI) is sensitive to water diffusion throughout tissues, which correlates with Gleason score, a histological measure of prostate cancer aggressiveness. In this study the ability of DW-MRI to detect prostate cancer onset and development was evaluated in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. MATERIALS AND METHODS: T2 -weighted and DW-MRI were acquired using a 7T MR scanner, 200 mm bore diameter; 10 TRAMP and 6 C57BL/6 control mice were scanned every 4 weeks from 8 weeks of age until sacrifice at 28-30 weeks. After sacrifice, the genitourinary tract was excised and sectioned for histological analysis. Histology slides registered with DW-MR images allowed for validation of DW-MR images and the apparent diffusion coefficient (ADC) as tools for cancer detection and disease stratification. An automated early assessment tool based on ADC threshold values was developed to aid cancer detection and progression monitoring. RESULTS: The ADC differentiated between control prostate ((1.86 ± 0.20) × 10(-3) mm(2) /s) and normal TRAMP prostate ((1.38 ± 0.10) × 10(-3) mm(2) /s) (P = 0.0001), between TRAMP prostate and well-differentiated cancer ((0.93 ± 0.18) × 10(-3) mm(2) /s) (P = 0.0006), and between well-differentiated cancer and poorly differentiated cancer ((0.63 ± 0.06) × 10(-3) mm(2) /s) (P = 0.02). CONCLUSION: DW-MRI is a tool for early detection of cancer, and discrimination between cancer stages in the TRAMP model. The incorporation of DW-MRI-based prostate cancer stratification and monitoring could increase the accuracy of preclinical trials using TRAMP mice.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata/patología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Animales , Automatización , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Progresión de la Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Clasificación del Tumor , Invasividad Neoplásica , Reconocimiento de Normas Patrones Automatizadas , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...