RESUMEN
The matrix protein VP40 of the highly pathogenic Sudan virus (genus Orthoebolavirus) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.
RESUMEN
Pateamines, derived from the sponge Mycale hentscheli, function as inhibitors of the RNA helicase eIF4A and exhibit promising antiviral and anticancer properties. eIF4A plays a pivotal role in unwinding stable RNA structures within the 5'-UTR of selected mRNAs, facilitating the binding of the 43S preinitiation complex during translation initiation. Pateamines function by clamping RNA substrates onto the eIF4A surface, effectively preventing eIF4A from carrying out the unwinding step. Rocaglates, a compound class isolated from plants of the genus Aglaia, target the same binding pocket on eIF4A, and based on structural data, a similar mode of action has been proposed for pateamines and rocaglates. In this study, we conducted a detailed characterization of pateamines' binding mode and assessed their antiviral activity against human pathogenic coronaviruses (human coronavirus 229E (HCoV-229E), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)). Our findings reveal significant differences in the binding behavior of pateamines compared to rocaglates when interacting with an eIF4A-RNA complex. We also observed that pateamines do not depend on the presence of a polypurine tract in the RNA substrate for efficient RNA clamping, as it is the case for rocaglates. Most notably, pateamines demonstrate potent antiviral activity against coronaviruses in the low nanomolar range. Consequently, pateamines broaden our toolbox for combating viruses that rely on the host enzyme eIF4A to conduct their viral protein synthesis, indicating a possible future treatment strategy against new or re-emerging pathogenic viruses.
RESUMEN
Three new series of macrocyclic active site-directed inhibitors of the Zika virus (ZIKV) NS2B-NS3 protease were synthesized. First, attempts were made to replace the basic P3 lysine residue of our previously described inhibitors with uncharged and more hydrophobic residues. This provided numerous compounds with inhibition constants between 30 and 50 nM. A stronger reduction of the inhibitory potency was observed when the P2 lysine was replaced by neutral residues, all of these inhibitors possess Ki values >1 µM. However, it is possible to replace the P2 lysine with the less basic 3-aminomethylphenylalanine, which provides a similarly potent inhibitor of the ZIKV protease (Ki = 2.69 nM). Crystal structure investigations showed that the P2 benzylamine structure forms comparable interactions with the protease as lysine. Twelve additional structures of these inhibitors in complex with the protease were determined, which explain many, but not all, SAR data obtained in this study. All individual modifications in the P2 or P3 position resulted in inhibitors with low antiviral efficacy in cell culture. Therefore, a third inhibitor series with combined modifications was synthesized; all of them contain a more hydrophobic d-cyclohexylalanine in the linker segment. At a concentration of 40 µM, two of these compounds possess similar antiviral potency as ribavirin at 100 µM. Due to their reliable crystallization in complex with the ZIKV protease, these cyclic compounds are very well suited for a rational structure-based development of improved inhibitors.
Asunto(s)
Antivirales , Compuestos Macrocíclicos , Virus Zika , Virus Zika/enzimología , Virus Zika/efectos de los fármacos , Relación Estructura-Actividad , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Estructura Molecular , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Relación Dosis-Respuesta a Droga , Serina Endopeptidasas/metabolismo , Humanos , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/síntesis química , Inhibidores de Proteasa Viral/química , Cristalografía por Rayos X , Proteasas Virales , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-boxRESUMEN
Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.
Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-pim-1 , Estilbenos , Humanos , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Estilbenos/química , Estilbenos/farmacología , Estilbenos/síntesis química , Relación Estructura-ActividadRESUMEN
The Shigella pathogenicity factor IpgC belongs to the class II of type III secretion system chaperones, whose members are characterized by a tetratricopeptide repeat (TPR) domain consisting of three and a half TPR motifs. Since IpgC is essential for Shigella virulence, we determined a high-resolution crystal structure of this chaperone to facilitate its use as a target for the structure-based design of anti-shigellosis compounds. The crystal structure revealed two possible homodimer assemblies, which strongly differ from the homodimer architectures so far known for IpgC and orthologues thereof. Through crystallographic fragment screening, we identified 10 small molecules that bind to IpgC and, therefore, are available for expansion to generate larger, more potent binders. A follow-up compound, based on one of our fragment hits, binds to a strictly conserved site, which overlaps with the binding site of the chaperone's substrates, IpaB and IpaC. Therefore, it constitutes a promising starting point for the design of functional IpgC inhibitors.
RESUMEN
The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.
Asunto(s)
Ebolavirus , Proteínas de la Matriz Viral , Ebolavirus/genética , Ebolavirus/metabolismo , Mutación , Oxidación-Reducción , Sudán , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Ensamble de Virus , HumanosRESUMEN
Inhibition of eukaryotic initiation factor 4A has been proposed as a strategy to fight pathogens. Rocaglates exhibit the highest specificities among eIF4A inhibitors, but their anti-pathogenic potential has not been comprehensively assessed across eukaryotes. In silico analysis of the substitution patterns of six eIF4A1 aa residues critical to rocaglate binding, uncovered 35 variants. Molecular docking of eIF4A:RNA:rocaglate complexes, and in vitro thermal shift assays with select recombinantly expressed eIF4A variants, revealed that sensitivity correlated with low inferred binding energies and high melting temperature shifts. In vitro testing with silvestrol validated predicted resistance in Caenorhabditis elegans and Leishmania amazonensis and predicted sensitivity in Aedes sp., Schistosoma mansoni, Trypanosoma brucei, Plasmodium falciparum, and Toxoplasma gondii. Our analysis further revealed the possibility of targeting important insect, plant, animal, and human pathogens with rocaglates. Finally, our findings might help design novel synthetic rocaglate derivatives or alternative eIF4A inhibitors to fight pathogens.
Asunto(s)
Factor 4A Eucariótico de Iniciación , ARN , Animales , Humanos , Simulación del Acoplamiento Molecular , ARN/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Helicasas DEAD-box/metabolismoRESUMEN
Human aldose reductase, a target for the development of inhibitors for preventing diabetic complications, displays a transient specificity pocket which opens upon binding with specific, potent inhibitors. We investigated the opening mechanism of this pocket by mutating leucine residues involved in the gate keeping mechanism to alanine. Two isostructural inhibitors distinguished only by a single nitro to carboxy group replacement, have a 1000-fold difference in their binding affinity to the wild type. This difference is reduced to 10-fold in the mutated variants as the nitro derivative loses in affinity but conserves binding to the open transient pocket. The affinity of the carboxylate analog is minimally altered but the analog binding preference changes from the closed to open state of the transient pocket. Differences in the solvation properties of ligands and the transient pocket as well as changes from induced fit to conformational selections provide an explanation for the altered behavior of the ligands with respect to their binding to the different variants.
Asunto(s)
Aldehído Reductasa , Inhibidores Enzimáticos , Humanos , Modelos Moleculares , Sitios de Unión , Inhibidores Enzimáticos/química , Aldehído Reductasa/genética , LigandosRESUMEN
In this study, fragment-sized hits binding to Pim-1 kinase with initially modest affinity were further optimized by combining computational, synthetic and crystallographic expertise, eventually resulting in potent ligands with affinities in the nanomolar range that address rarely-targeted regions of Pim-1 kinase. Starting from a set of crystallographically validated, chemically distinct fragments that bind to Pim-1 kinase but lack typical nucleotide mimetic structures, a library of extended fragments was built by exhaustive in silico reactions. After docking, minimization, clustering, visual inspection of the top-ranked compounds, and evaluation of ease of synthetic accessibility, either the original compound or a close derivative was synthesized and tested against Pim-1. For compounds showing the highest degree of Pim-1 inhibition the binding mode was determined crystallographically. Following a structure-guided approach, these were further optimized in a subsequent design cycle improving the compound's initial affinity by several orders of magnitude while synthesizing only a comparatively modest number of derivatives. The combination of computational and experimental approaches resulted in the development of a reasonably potent, novel molecular scaffold for inhibition of Pim-1 that targets specific surface regions, such as the interaction with R122 and P123 of the hinge region, which has been less frequently investigated in similar studies.
Asunto(s)
Nucleótidos , Proteínas Proto-Oncogénicas c-pim-1 , Análisis por Conglomerados , CristalografíaRESUMEN
The Zika virus (ZIKV) remains a potential threat to the public health due to the lack of both an approved vaccination or a specific treatment. In this work, a series of peptidic inhibitors of the ZIKV protease with boroleucine as P1 residue was synthesized. The highest affinities with Ki values down to 8â nM were observed for compounds with basic residues in both P2 and P3 position and at the N-terminus. The low potency of reference compounds containing leucine, leucine-amide or isopentylamide as P1 residue suggested a covalent binding mode of the boroleucine-derived inhibitors. This was finally proven by crystal structure determination of the most potent inhibitor from this series in complex with the ZIKV protease.
Asunto(s)
Antivirales , Inhibidores de Proteasas , Infección por el Virus Zika , Virus Zika , Humanos , Antivirales/farmacología , Antivirales/química , Leucina/química , Leucina/farmacología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus Zika/efectos de los fármacos , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismoRESUMEN
In their recent commentary in Protein Science, Jaskolski et al. analyzed three randomly picked diffraction data sets from fragment-screening group depositions from the PDB and, based on that, they claimed that such data are principally problematic. We demonstrate here that if such data are treated properly, none of the proclaimed criticisms persist.
Asunto(s)
Proteínas , Cristalografía por Rayos X , Ligandos , Proteínas/químicaRESUMEN
In tRNAAsp, tRNAAsn, tRNATyr, and tRNAHis of most bacteria and eukaryotes, the anticodon wobble position may be occupied by the modified nucleoside queuosine, which affects the speed and the accuracy of translation. Since eukaryotes are not able to synthesize queuosine de novo, they have to salvage queuine (the queuosine base) as a micronutrient from food and/or the gut microbiome. The heterodimeric Zn2+ containing enzyme tRNA-guanine transglycosylase (TGT) catalyzes the insertion of queuine into the above-named tRNAs in exchange for the genetically encoded guanine. This enzyme has attracted medical interest since it was shown to be potentially useful for the treatment of multiple sclerosis. In addition, TGT inactivation via gene knockout leads to the suppressed cell proliferation and migration of certain breast cancer cells, which may render this enzyme a potential target for the design of compounds supporting breast cancer therapy. As a prerequisite to fully exploit the medical potential of eukaryotic TGT, we have determined and analyzed a number of crystal structures of the functional murine TGT with and without bound queuine. In addition, we have investigated the importance of two residues of its non-catalytic subunit on dimer stability and determined the Michaelis-Menten parameters of murine TGT with respect to tRNA and several natural and artificial nucleobase substrates. Ultimately, on the basis of available TGT crystal structures, we provide an entirely conclusive reaction mechanism for this enzyme, which in detail explains why the TGT-catalyzed insertion of some nucleobases into tRNA occurs reversibly while that of others is irreversible.
Asunto(s)
Pentosiltransferasa/química , Animales , Células Eucariotas/metabolismo , Femenino , Guanina/metabolismo , Humanos , Ratones , Nucleósido Q , ARN de Transferencia/químicaRESUMEN
Understanding the structural arrangements of protein oligomers can support the design of ligands that interfere with their function in order to develop new therapeutic concepts for disease treatment. Recent crystallographic studies have elucidated a novel twisted and functionally inactive form of the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative target in the fight against shigellosis. Active-site ligands have been identified that stimulate the rearrangement of one monomeric subunit by 130° against the other one to form an inactive twisted homodimer state. To assess whether the crystallographic observations also reflect the conformation in solution and rule out effects from crystal packing, we performed 19F-NMR spectroscopy with the introduction of 5-fluorotryptophans at four sites in TGT. The inhibitor-induced conformation of TGT in solution was assessed based on 19F-NMR chemical shift perturbations. We investigated the effect of C(4) substituted lin-benzoguanine ligands and identified a correlation between dynamic protein rearrangements and ligand-binding features in the corresponding crystal structures. These involve the destabilization of a helix next to the active site and the integrity of a flexible loop-helix motif. Ligands that either completely lack an attached C(4) substituent or use it to stabilize the geometry of the functionally competent dimer state do not indicate the presence of the twisted dimer form in the NMR spectra. The perturbation of crucial structural motifs in the inhibitors correlates with an increasing formation of the inactive twisted dimer state, suggesting these ligands are able to shift a conformational equilibrium from active C2-symmetric to inactive twisted dimer conformations. These findings suggest a novel concept for the design of drug candidates for further development.
Asunto(s)
Zymomonas , Dominio Catalítico , Cristalografía por Rayos X , Guanina/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Pentosiltransferasa/química , Conformación Proteica , ARN de Transferencia/química , Zymomonas/químicaRESUMEN
A rational structure-based approach was employed to develop novel 3-amidinophenylalanine-derived matriptase inhibitors with improved selectivity against thrombin and factor Xa. Of all 23 new derivatives, several monobasic inhibitors exhibit high matriptase affinities and strong selectivity against thrombin. Some inhibitors also possess selectivity against factor Xa, although less pronounced as found for thrombin. A crystal structure of a selective monobasic matriptase inhibitor in complex with matriptase and three crystal structures of related compounds in trypsin and thrombin have been determined. The structures offer an explanation for the different selectivity profiles of these inhibitors and contribute to a more detailed understanding of the observed structure-activity relationship. Selected compounds were tested in vitro against a matriptase-dependent H9N2 influenza virus strain and demonstrated a concentration-dependent inhibition of virus replication in MDCK(II) cells.
Asunto(s)
Factor Xa , Subtipo H9N2 del Virus de la Influenza A , Fenilalanina/química , Factor Xa/metabolismo , Inhibidores del Factor Xa/farmacología , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Serina Endopeptidasas , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Relación Estructura-Actividad , TrombinaRESUMEN
Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Antivirales/química , Antivirales/farmacología , Humanos , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus Zika/efectos de los fármacos , Virus Zika/enzimología , Infección por el Virus Zika/tratamiento farmacológicoRESUMEN
The transient specificity pocket of aldose reductase only opens in response to specific ligands. This pocket may offer an advantage for the development of novel, more selective ligands for proteins with similar topology that lack such an adaptive pocket. Our aim was to elucidate which properties allow an inhibitor to bind in the specificity pocket. A series of inhibitors that share the same parent scaffold but differ in their attached aromatic substituents were screened using ITC and X-ray crystallography for their ability to occupy the pocket. Additionally, we investigated the electrostatic potentials and charge distribution across the attached terminal aromatic groups with respect to their potential to bind to the transient pocket of the enzyme using ESP calculations. These methods allowed us to confirm the previously established hypothesis that an electron-deficient aromatic group is an important prerequisite for opening and occupying the specificity pocket. We also demonstrated from our crystal structures that a pH shift between 5 and 8 does not affect the binding position of the ligand in the specificity pocket. This allows for a comparison between thermodynamic and crystallographic data collected at different pH values.
Asunto(s)
Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Inhibidores Enzimáticos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Conformación Proteica , Relación Estructura-ActividadRESUMEN
In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.
Asunto(s)
Ácido Aspártico Endopeptidasas , Cristalografía por Rayos X/métodos , Descubrimiento de Drogas/métodos , Ligandos , Modelos Moleculares , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Dominio Catalítico , Unión ProteicaRESUMEN
Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.
Asunto(s)
Proteínas Bacterianas/metabolismo , Pentosiltransferasa/metabolismo , Quinazolinonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Mutación , Pentosiltransferasa/química , Pentosiltransferasa/genética , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Quinazolinonas/química , Zymomonas/enzimologíaRESUMEN
Interference with protein-protein interfaces represents an attractive as well as challenging option for therapeutic intervention and drug design. The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, is only functional as a homodimer. Although we previously produced monomeric variants by site-directed mutagenesis, we only crystallized the functional dimer, simply because upon crystallization the local protein concentration increases and favors formation of the dimer interface, which represents an optimal and highly stable packing of the protein in the solid state. Unfortunately, this prevents access to structural information about the interface geometry in its monomeric state and complicates the development of modulators that can interfere with and prevent dimer formation. Here, we report on a cysteine-containing protein variant in which, under oxidizing conditions, a disulfide linkage is formed. This reinforces a novel packing geometry of the enzyme. In this captured quasi-monomeric state, the monomer units arrange in a completely different way and, thus, expose a loop-helix motif, originally embedded into the old interface, now to the surface. The motif adopts a geometry incompatible with the original dimer formation. Via the soaking of fragments into the crystals, we identified several hits accommodating a cryptic binding site next to the loop-helix motif and modulated its structural features. Our study demonstrates the druggability of the interface by breaking up the homodimeric protein using an introduced disulfide cross-link. By rational concepts, we increased the potency of these fragments to a level where we confirmed their binding by NMR to a nondisulfide-linked TGT variant. The idea of intermediately introducing a disulfide linkage may serve as a general concept of how to transform a homodimer interface into a quasi-monomeric state and give access to essential structural and design information.
Asunto(s)
Disulfuros/química , Pentosiltransferasa/química , Bibliotecas de Moléculas Pequeñas/farmacología , Zymomonas/enzimología , Sitios de Unión/efectos de los fármacos , Ligandos , Modelos Moleculares , Multimerización de Proteína/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Zymomonas/químicaRESUMEN
Fragment screening is a technique that helps to identify promising starting points for ligand design. Given that crystals of the target protein are available and display reproducibly high-resolution X-ray diffraction properties, crystallography is among the most preferred methods for fragment screening because of its sensitivity. Additionally, it is the only method providing detailed 3D information of the binding mode of the fragment, which is vital for subsequent rational compound evolution. The routine use of the method depends on the availability of suitable fragment libraries, dedicated means to handle large numbers of samples, state-of-the-art synchrotron beamlines for fast diffraction measurements and largely automated solutions for the analysis of the results. Here, the complete practical workflow and the included tools on how to conduct crystallographic fragment screening (CFS) at the Helmholtz-Zentrum Berlin (HZB) are presented. Preceding this workflow, crystal soaking conditions as well as data collection strategies are optimized for reproducible crystallographic experiments. Then, typically in a one to two-day procedure, a 96-membered CFS-focused library provided as dried ready-to-use plates is employed to soak 192 crystals, which are then flash-cooled individually. The final diffraction experiments can be performed within one day at the robot-mounting supported beamlines BL14.1 and BL14.2 at the BESSY II electron storage ring operated by the HZB in Berlin-Adlershof (Germany). Processing of the crystallographic data, refinement of the protein structures, and hit identification is fast and largely automated using specialized software pipelines on dedicated servers, requiring little user input. Using the CFS workflow at the HZB enables routine screening experiments. It increases the chances for successful identification of fragment hits as starting points to develop more potent binders, useful for pharmacological or biochemical applications.