Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 336: 122133, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670771

RESUMEN

Using respiratory protective equipment is one of the relevant preventive measures for infectious diseases, including COVID-19, and for various occupational respiratory hazards. Because experienced discomfort may result in a decrease in the utilization of respirators, it is important to enhance the material properties to resolve suboptimal usage. We combined several technologies to produce a filtration material that met requirements set by a cross-disciplinary interview study on the usability of protective equipment. Improved breathability, environmental sustainability, and comfort of the material were achieved by electrospinning poly(ethylene oxide) (PEO) nanofibers on a thin foam-formed fabric from regenerated cellulose fibers. The high filtration efficiency of sub-micron-sized diethylhexyl sebacate (DEHS) aerosol particles resulted from the small mean segment length of 0.35 µm of the nanofiber network. For a particle diameter of 0.6 µm, the filtration efficiency of a single PEO layer varied in the range of 80-97 % depending on the coat weight. The corresponding pressure drop had the level of 20-90 Pa for the airflow velocity of 5.3 cm/s. Using a multilayer structure, a very high filtration efficiency of 99.5 % was obtained with only a slightly higher pressure drop. This opens a route toward designing sustainable personal protective media with improved user experience.


Asunto(s)
Celulosa , Filtración , Nanofibras , Celulosa/química , Celulosa/análogos & derivados , Filtración/métodos , Nanofibras/química , Humanos , COVID-19/prevención & control , Polietilenglicoles/química , Dispositivos de Protección Respiratoria , Tamaño de la Partícula , SARS-CoV-2 , Aerosoles/química
2.
Ann Work Expo Health ; 65(9): 1085-1095, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34228094

RESUMEN

The aim of the study was to find out good practices for effective air distribution inside a complex shaped asbestos enclosure and for control of pressure differences between the enclosure and the surroundings. In addition, sufficient pressure difference for asbestos containment was tested. The effect of air distribution was studied in laboratory conditions by constructing an L-shaped asbestos enclosure and connecting it to a negative pressure unit. The efficiency of six different ventilation configurations was compared using a tracer decay method and the local air change indexes as the performance indicator. The sufficient negative pressure for containment was assessed by simulating person traffic to and from the enclosure and recording the pressure difference continuously. The effect of a pressure controller unit in maintaining the target pressure difference was also tested by simulating filter loadings of the negative pressure unit causing changes in the air flow rate. The results showed that high nominal air change rates alone do not guarantee good air distribution. Effective air distribution within an asbestos enclosure can be arranged by locating additional air supply openings far away from the air exhaustion point, using recirculation air with a pressure controller, or extending the exhaust location to the poorly ventilated areas. A pressure difference of at least -10 Pa is recommended to ensure a sufficient margin of safety in practical situations.


Asunto(s)
Amianto , Exposición Profesional , Humanos , Laboratorios , Ventilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA