Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 112(1): 491-501, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27496868

RESUMEN

AIMS: Elevated levels of inositol 1,4,5-trisphosphate (IP3) in adult cardiac myocytes are typically associated with the development of cardiac hypertrophy, arrhythmias, and heart failure. IP3 enhances intracellular Ca(2+ )release via IP3 receptors (IP3Rs) located at the sarcoplasmic reticulum (SR). We aimed to determine whether IP3-induced Ca(2+ )release affects mitochondrial function and determine the underlying mechanisms. METHODS AND RESULTS: We compared the effects of IP3Rs- and ryanodine receptors (RyRs)-mediated cytosolic Ca(2+ )elevation achieved by endothelin-1 (ET-1) and isoproterenol (ISO) stimulation, respectively, on mitochondrial Ca(2+ )uptake and adenosine triphosphate (ATP) generation. Both ET-1 and isoproterenol induced an increase in mitochondrial Ca(2+ )(Ca(2 +) m) but only ET-1 led to an increase in ATP concentration. ET-1-induced effects were prevented by cell treatment with the IP3 antagonist 2-aminoethoxydiphenyl borate and absent in myocytes from transgenic mice expressing an IP3 chelating protein (IP3 sponge). Furthermore, ET-1-induced mitochondrial Ca(2+) uptake was insensitive to the mitochondrial Ca(2+ )uniporter inhibitor Ru360, however was attenuated by RyRs type 1 inhibitor dantrolene. Using real-time polymerase chain reaction, we detected the presence of all three isoforms of IP3Rs and RyRs in murine ventricular myocytes with a dominant presence of type 2 isoform for both receptors. CONCLUSIONS: Stimulation of IP3Rs with ET-1 induces Ca(2+ )release from the SR which is tunnelled to mitochondria via mitochondrial RyR leading to stimulation of mitochondrial ATP production.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Estimulación Eléctrica , Endotelina-1/farmacología , Genotipo , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/genética , Isoproterenol/farmacología , Potencial de la Membrana Mitocondrial , Ratones Transgénicos , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Factores de Tiempo
2.
Front Microbiol ; 7: 1107, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27468286

RESUMEN

Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4(+) or CD8(+) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b(+) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b(+) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.

3.
Cell Signal ; 27(9): 1781-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26004136

RESUMEN

Colon cancer is one of the most common tumors in the human population. Recent studies have shown a reduced risk for colon cancer in patients given the antidepressant fluoxetine (FLX). The exact mechanism by which FLX might protect from colon cancer remains however controversial. Here, FLX reduced the development of different colon tumor xenografts, as well as proliferation in hypoxic tumor areas within them. FLX treatment also decreased microvessel numbers in tumors. Although FLX did not increase serum and tumor glucose levels as much as the colon chemotherapy gold standard Fluorouracil did, lactate levels were significantly augmented within tumors by FLX treatment. The gene expression of the MCT4 lactate transporter was significantly downregulated. Total protein amounts from the third and fifth mitochondrial complexes were significantly decreased by FLX in tumors. Cell culture experiments revealed that FLX reduced the mitochondrial membrane potential significantly and disabled the reactive oxygen species production of the third mitochondrial complex. Furthermore, FLX arrested hypoxic colon tumor cells in the G0/G1 phase of the cell-cycle. The expression of key cell-cycle-related checkpoint proteins was enhanced in cell culture and in vivo experiments. Therefore, we suggest FLX impairs energy generation, cell cycle progression and proliferation in tumor cells, especially under condition of hypoxia. This then leads to reduced microvessel formation and tumor shrinkage in xenograft models.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Fluoxetina/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Animales , Células CACO-2 , Hipoxia de la Célula/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Fase G1/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...