Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22258, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097643

RESUMEN

Arabidopsis microRNA165a (miR165a) targets Class III Homeodomain Leucine-Zipper (HD-ZIPIII) transcription factors to regulate various aspects of plant development and stress response. Over-expression of miR165a mimics the loss-of-function phenotype of HD-ZIPIII genes and leading to ectopic organ formation, shoot apical meristem (SAM) termination, loss of leaf polarity, and defective vasculature development. However, the molecular mechanisms underlying these phenotypes remain unresolved. Here, we over-expressed miR165a in a dexamethasone inducible manner and identified differentially expressed genes in the SAM through RNA-Seq. Simultaneously, using multi-channel FACS combined with RNA-Seq approach, we characterized global transcriptome patterns in miR165a expressing cell-types compared to HD-ZIPIII expressing cell-types and other cell-types in SAM. By integrating our results we identified sets of genes which are up-regulated by miR165a as well have enriched expression in miR165a cell-types, and vice-versa. Known plant development related genes such as HD-ZIPIII and their targets LITTLE ZIPPERs, Like AUXIN RESISTANT 2, BEL1-like homeodomain 6, ROTUNDIFOLIA like 16 were found to be down-regulated. Among the up-regulated genes, GIBBERELLIN 2-OXIDASEs, various elemental transporters (YSL3, ZIFL1, SULTR), and other transporter genes were prominent. Thus, the genes identified in this study help to unravel the molecular mechanism of miR165a and HD-ZIPIII regulated plant development and stress response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema , Transcriptoma , MicroARNs/genética
3.
iScience ; 25(10): 105062, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157591

RESUMEN

At the Arabidopsis shoot apex, epidermal cells are planar-polarized along an axis marked by the asymmetric localization patterns of several proteins including PIN-FORMED1 (PIN1), which facilitates the directional efflux of the plant hormone auxin to pattern phyllotaxis. While PIN1 polarity is known to be regulated non-cell autonomously via the MONOPTEROS (MP) transcription factor, how this occurs has not been determined. Here, we use mosaic expression of the serine threonine kinase PINOID (PID) to test whether PIN1 polarizes according to the polarity of neighboring cells. Our findings reveal that PIN1 is insensitive to the polarity of PIN1 in neighboring cells arguing against auxin flux or extracellular auxin concentrations acting as a polarity cue, in contrast to previous model proposals.

4.
Dev Cell ; 57(17): 2063-2080.e10, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36002002

RESUMEN

Cellular heterogeneity is a hallmark of multicellular organisms. During shoot regeneration from undifferentiated callus, only a select few cells, called progenitors, develop into shoot. How these cells are selected and what governs their subsequent progression to a patterned organ system is unknown. Using Arabidopsis thaliana, we show that it is not just the abundance of stem cell regulators but rather the localization pattern of polarity proteins that predicts the progenitor's fate. A shoot-promoting factor, CUC2, activated the expression of the cell-wall-loosening enzyme, XTH9, solely in a shell of cells surrounding the progenitor, causing different mechanical stresses in these cells. This mechanical conflict then activates cell polarity in progenitors to promote meristem formation. Interestingly, genetic or physical perturbations to cells surrounding the progenitor impaired the progenitor and vice versa. These suggest a feedback loop between progenitors and their neighbors for shoot regeneration in the absence of tissue-patterning cues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Brotes de la Planta/metabolismo
5.
Curr Opin Plant Biol ; 69: 102262, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952407

RESUMEN

Plant development is regulated by transcription factors that often act in more than one process and stage of development. Yet the molecular mechanisms that govern the functional diversity and specificity of these proteins remains far from understood. Flower development provides an ideal context to study these mechanisms since the development of distinct floral organs depends on similar but distinct combinations of transcriptional regulators. Recent work also highlights the importance of leaf polarity regulators as additional key factors in flower initiation, floral organ morphogenesis, and possibly floral organ positioning. A detailed understanding of how these factors work in combination will enable us to address outstanding questions in flower development including how distinct shapes and positions of floral organs are generated. Experimental approaches and computer-based modeling will be required to characterize gene-regulatory networks at the level of single cells.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Flores , Regulación de la Expresión Génica de las Plantas/genética , Desarrollo de la Planta/genética , Hojas de la Planta/metabolismo , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Front Plant Sci ; 12: 786338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868186

RESUMEN

Over the last decade or so important progress has been made in identifying and understanding a set of patterning mechanisms that have the potential to explain many aspects of plant morphology. These include the feedback loop between mechanical stresses and interphase microtubules, the regulation of plant cell polarity and the role of adaxial and abaxial cell type boundaries. What is perhaps most intriguing is how these mechanisms integrate in a combinatorial manner that provides a means to generate a large variety of commonly seen plant morphologies. Here, I review our current understanding of these mechanisms and discuss the links between them.

7.
Methods Mol Biol ; 2200: 295-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175383

RESUMEN

Plants develop lateral organs such as leaves and flowers throughout their post-embryonic life from a structure called the shoot apical meristem (SAM), located at the plant shoot apex. This process is highly dynamic, and therefore in order to understand meristem and organ development, it is critical to be able to analyze these processes with high temporal and spatial resolution. Although several protocols have been published for imaging the Arabidopsis inflorescence meristem, gaining access to the vegetative meristem for imaging has been considered more difficult. Here we describe a method to dissect young Arabidopsis seedlings in order to obtain a clear view of the vegetative meristem and young leaf primordia using confocal microscopy.


Asunto(s)
Arabidopsis , Meristema , Hojas de la Planta , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , Microscopía Confocal , Microscopía Fluorescente , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo
8.
PLoS Genet ; 16(4): e1008661, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32294082

RESUMEN

In the Arabidopsis thaliana shoot apical meristem (SAM) the expression domains of Class III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI (KAN) genes are separated by a narrow boundary region from which new organs are initiated. Disruption of this boundary through either loss of function or ectopic expression of HD-ZIPIII and KAN causes ectopic or suppression of organ formation respectively, raising the question of how these transcription factors regulate organogenesis at a molecular level. In this study we develop a multi-channel FACS/RNA-seq approach to characterize global patterns of gene expression across the HD-ZIPIII-KAN1 SAM boundary. We then combine FACS, RNA-seq and perturbations of HD-ZIPIII and KAN expression to identify genes that are both responsive to REV and KAN1 and normally expressed in patterns that correlate with REV and KAN1. Our data reveal that a significant number of genes responsive to REV are regulated in opposite ways depending on time after induction, with genes associated with auxin response and synthesis upregulated initially, but later repressed. We also characterize the cell type specific expression patterns of auxin responsive genes and identify a set of genes involved in organogenesis repressed by both REV and KAN1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Factores de Transcripción/metabolismo , Análisis por Conglomerados , Citocininas/metabolismo , Citometría de Flujo , Ontología de Genes , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Inflorescencia , Reguladores del Crecimiento de las Plantas/metabolismo , RNA-Seq , Transducción de Señal , Transcriptoma
9.
Curr Opin Plant Biol ; 53: 73-79, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31785585

RESUMEN

Plants continuously produce lateral organs from the shoot apex such as leaves and flowers, providing an excellent opportunity to study their development. The plant hormone auxin plays a central role in this process by promoting organ formation where it accumulates due to polar auxin transport. Recently, the use of live-imaging, fine perturbation techniques and computational modelling has helped researchers make exciting progress in addressing long-standing questions on plant organogenesis, not only regarding the role of auxin in promoting growth but also on the regulation of morphogenesis and transcriptional control. In this review, we discuss a number of recent studies that address these points, with particular reference to how auxin acts in early leaf development and in leaf shape.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Flores , Regulación de la Expresión Génica de las Plantas , Meristema , Reguladores del Crecimiento de las Plantas , Hojas de la Planta
10.
Nat Commun ; 10(1): 726, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760714

RESUMEN

In plants mechanical signals pattern morphogenesis through the polar transport of the hormone auxin and through regulation of interphase microtubule (MT) orientation. To date, the mechanisms by which such signals induce changes in cell polarity remain unknown. Through a combination of time-lapse imaging, and chemical and mechanical perturbations, we show that mechanical stimulation of the SAM causes transient changes in cytoplasmic calcium ion concentration (Ca2+) and that transient Ca2+ response is required for downstream changes in PIN-FORMED 1 (PIN1) polarity. We also find that dynamic changes in Ca2+ occur during development of the SAM and this Ca2+ response is required for changes in PIN1 polarity, though not sufficient. In contrast, we find that Ca2+ is not necessary for the response of MTs to mechanical perturbations revealing that Ca2+ specifically acts downstream of mechanics to regulate PIN1 polarity response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Polaridad Celular/fisiología , Ácidos Indolacéticos/metabolismo , Transporte de Proteínas/fisiología , Nicho de Células Madre/fisiología , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Membrana Celular/metabolismo , Interfase/fisiología , Proteínas de Transporte de Membrana/metabolismo , Microtúbulos/metabolismo , Morfogénesis , Tallos de la Planta/metabolismo
11.
Elife ; 82019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30667357

RESUMEN

Dorsoventrality in leaves has been shown to depend on the pre-patterned expression of KANADI and HD-ZIPIII genes within the plant shoot apical meristem (SAM). However, it has also been proposed that asymmetric auxin levels within initiating leaves help establish leaf polarity, based in part on observations of the DII auxin sensor. By analyzing and quantifying the expression of the R2D2 auxin sensor, we find that there is no obvious asymmetry in auxin levels during Arabidopsis leaf development. We further show that the mDII control sensor also exhibits an asymmetry in expression in developing leaf primordia early on, while it becomes more symmetric at a later developmental stage as reported previously. Together with other recent findings, our results argue against the importance of auxin asymmetry in establishing leaf polarity.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Meristema/genética , Microscopía Confocal , Mutación , Brotes de la Planta/metabolismo , Factores de Transcripción/metabolismo , Transgenes
12.
Development ; 145(14)2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29967282

RESUMEN

Mutual interactions of the phytohormones, cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding of the role of hormonal metabolism and perception during early stages of cell fate reprogramming is still elusive. Here we show that auxin activates root formation, whereas cytokinins mediate early loss of the root identity, primordia disorganisation and initiation of shoot development. Exogenous and endogenous cytokinins influence the initiation of newly formed organs, as well as the pace of organ development. The process of de novo shoot apical meristem establishment is accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of the shoot-specific homeodomain regulator WUSCHEL. The last is associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulates the root stem cell organiser WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role for endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo-induced organ identity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Citocininas/metabolismo , Meristema/embriología , Organogénesis de las Plantas/fisiología , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética
13.
Development ; 145(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29439134

RESUMEN

Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding.


Asunto(s)
Desarrollo de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Fenómenos Biomecánicos , Comunicación Celular , Polaridad Celular , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Periodicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas
14.
Elife ; 62017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895530

RESUMEN

In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/genética , Morfogénesis , Factores de Transcripción/genética
15.
Curr Opin Plant Biol ; 35: 111-116, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918939

RESUMEN

Leaves are present in all land plants and are specialized organs for light harvesting. They arise at the flanks of the shoot apical meristem (SAM), and develop into lamina structures that exhibit adaxial/abaxial (upper/lower side of the leaf) polarity. At the molecular level, an intricate regulatory network determines ad-/abaxial polarity in Arabidopsis thaliana leaves, where the Class III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI (KAN) proteins are key mediators. The HD-ZIPIII REVOLUTA (REV) is expressed in the adaxial domain of lateral organs, whereas KAN1 is involved in abaxial differentiation. The REV/KAN1 module directly and antagonistically regulates the expression of several genes involved in shade-induced growth and auxin biosynthetic enzymes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
16.
Curr Biol ; 26(23): 3202-3208, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27818174

RESUMEN

The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2-6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7-12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Periodicidad , Factores de Transcripción/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión al ADN/genética , Mutación , Factores de Transcripción/genética
17.
Proc Natl Acad Sci U S A ; 113(42): 11973-11978, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698117

RESUMEN

A defining feature of plant leaves is their flattened shape. This shape depends on an antagonism between the genes that specify adaxial (top) and abaxial (bottom) tissue identity; however, the molecular nature of this antagonism remains poorly understood. Class III homeodomain leucine zipper (HD-ZIP) transcription factors are key mediators in the regulation of adaxial-abaxial patterning. Their expression is restricted adaxially during early development by the abaxially expressed microRNA (MIR)165/166, yet the mechanism that restricts MIR165/166 expression to abaxial leaf tissues remains unknown. Here, we show that class III and class II HD-ZIP proteins act together to repress MIR165/166 via a conserved cis-element in their promoters. Organ morphology and tissue patterning in plants, therefore, depend on a bidirectional repressive circuit involving a set of miRNAs and its targets.


Asunto(s)
Proteínas de Homeodominio/genética , Leucina Zippers/genética , MicroARNs/genética , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biomarcadores , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Unión Proteica , Carácter Cuantitativo Heredable , Elementos de Respuesta
18.
PLoS Genet ; 12(7): e1006168, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27398935

RESUMEN

Shoot branching requires the establishment of new meristems harboring stem cells; this phenomenon raises questions about the precise regulation of meristematic fate. In seed plants, these new meristems initiate in leaf axils to enable lateral shoot branching. Using live-cell imaging of leaf axil cells, we show that the initiation of axillary meristems requires a meristematic cell population continuously expressing the meristem marker SHOOT MERISTEMLESS (STM). The maintenance of STM expression depends on the leaf axil auxin minimum. Ectopic expression of STM is insufficient to activate axillary buds formation from plants that have lost leaf axil STM expressing cells. This suggests that some cells undergo irreversible commitment to a developmental fate. In more mature leaves, REVOLUTA (REV) directly up-regulates STM expression in leaf axil meristematic cells, but not in differentiated cells, to establish axillary meristems. Cell type-specific binding of REV to the STM region correlates with epigenetic modifications. Our data favor a threshold model for axillary meristem initiation, in which low levels of STM maintain meristematic competence and high levels of STM lead to meristem initiation.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Brotes de la Planta/crecimiento & desarrollo , Alelos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , Linaje de la Célula , Inmunoprecipitación de Cromatina , Genes de Plantas , Genotipo , Ácidos Indolacéticos/metabolismo , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regulación hacia Arriba
20.
Genes Dev ; 29(22): 2391-404, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26588991

RESUMEN

Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Cardamine/crecimiento & desarrollo , Cardamine/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/genética , Hojas de la Planta , Proteínas de Plantas/genética , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA