Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chimia (Aarau) ; 78(7-8): 499-512, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39221845

RESUMEN

The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs. The pursuit of new therapeutic agents has been enhanced by the creation of specialized labeled chemical probes, which aid in target localization, mechanistic studies, assay development, and the establishment of biomarkers for target engagement. By fusing medicinal chemistry with chemical biology in a comprehensive, translational end-to-end drug discovery strategy, we have expedited the development of novel therapeutics. Additionally, this strategy promises to foster highly productive partnerships between industry and academia, as will be illustrated through various examples.


Asunto(s)
Química Farmacéutica , Descubrimiento de Drogas , Endocannabinoides , Endocannabinoides/metabolismo , Endocannabinoides/química , Humanos , Industria Farmacéutica , Monoacilglicerol Lipasas/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Desarrollo de Medicamentos , Academia
2.
ACS Chem Biol ; 19(9): 2070-2080, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39186040

RESUMEN

Interest in affinity-based probes (AfBPs) as novel tools to interrogate G protein-coupled receptors (GPCRs) has gained traction in recent years. AfBPs represent an interesting and more versatile alternative to antibodies. In the present study, we report the development and validation of AfBPs that target the intracellular allosteric pocket of CCR2, a GPCR of interest for the development of therapies targeting autoimmune and inflammatory diseases and also cancer. Owing to the two-step labeling process of these CCR2 AfBPs through the incorporation of a click handle, we were successful in applying our most efficient probe in a variety of in vitro experiments and making use of multiple different detection techniques, such as SDS-PAGE and LC/MS-based proteomics. Collectively, this novel probe shows high selectivity, versatility, and applicability. Hence, this is a valuable alternative for CCR2-targeting antibodies and other traditional tool compounds and could aid in target validation and engagement in drug discovery.


Asunto(s)
Receptores CCR2 , Receptores CCR2/metabolismo , Receptores CCR2/química , Humanos , Regulación Alostérica , Sitio Alostérico , Células HEK293 , Marcadores de Afinidad/química , Sondas Moleculares/química
3.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201670

RESUMEN

CC chemokine receptor 2 (CCR2) has been linked to many inflammatory and immune diseases, making it a relevant drug target. Yet, all CCR2 antagonists developed so far have failed in clinical trials; thus, novel strategies are needed to target this receptor. Targeted protein degradation represents a novel approach to inhibit protein function by hijacking the cellular degradation machinery, such as the proteasome, to degrade the protein of interest. Here, we aimed to determine the amenability of CCR2 to chemically induced degradation by using a CCR2 fusion protein containing a HaloTag7 and HiBiT tag (CCR2-HaloTag-HiBiT). After characterization of the CCR2 construct, we used luminescence-based assays and immunofluorescence to quantify CCR2 levels, as well as a label-free, phenotypic assay to investigate the functional effect of CCR2 degradation. Treatment with HaloPROTAC3, which selectively degrades HaloTag fusion proteins, led to concentration- and time-dependent degradation of CCR2-HaloTag-HiBiT. HaloPROTAC3 induced degradation via the proteasome, as degradation was fully blocked with proteasomal inhibitors. Finally, functional assays showed that degradation of CCR2-HaloTag-HiBiT leads to a reduced functional response after agonist stimulation. Overall, our results indicate that CCR2 is amenable to targeted degradation, paving the way for the future development of CCR2 chemical degraders.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteolisis , Receptores CCR2 , Receptores CCR2/metabolismo , Humanos , Proteolisis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HEK293 , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética
4.
Biochem Pharmacol ; 229: 116464, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111604

RESUMEN

CC chemokine receptor 2 and CCL2 are highly involved in cancer growth and metastasis, and immune escape. Raised sodium ion concentrations in solid tumours have also been correlated to metastasis and immune modulation. Sodium ions can modulate class A G protein-coupled receptors through the sodium ion binding site characterized by a highly conserved aspartic acid residue (D2.50), also present in CCR2. Hence, we further explored this binding site in CCR2 by radioligand binding studies and mutagenesis. Modulation of three distinctly binding radioligands by sodium ions and amiloride derivates was investigated. Sodium ions were observed to be relatively weak modulators of antagonist binding, but substantially increased 125I-CCL2 dissociation from CCR2. 6-Substituted Hexamethylene Amiloride (HMA) modulated all tested radioligands. Induced-fit docking of HMA in the presumed sodium ion binding site of CCR2 confirmed its binding site. Finally, investigation of (cancer-associated) mutations in the sodium ion binding site showed a markedly decreased expression compared to wild type. Only two mutants, G123A3.35 and G127K3.39, were able to be bound by [3H]INCB3344 and [3H]CCR2-RA-[R]. Thus, mutagenesis showed that the sodium ion binding site residues, which are distinct from other class A GPCRs and related to chemokine receptor evolution, are crucial for receptor integrity. Moreover, the tested mutations appeared to have no effect on modulation observed by HMA or a minor effect on sodium chloride modulation on the tested radioligands. All in all, these results invite further exploration of the CCR2 sodium ion binding site in (cancer) biology, and potentially as a third druggable binding site.

5.
J Med Chem ; 67(14): 11841-11867, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38990855

RESUMEN

The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.


Asunto(s)
Colorantes Fluorescentes , Receptor Cannabinoide CB1 , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Receptor Cannabinoide CB1/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Células HEK293 , Ligandos , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Relación Estructura-Actividad , AMP Cíclico/metabolismo
6.
ACS Pharmacol Transl Sci ; 7(7): 2080-2092, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022357

RESUMEN

In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal ß-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.

7.
Front Pharmacol ; 15: 1401599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050757

RESUMEN

With over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce. Additionally, many small molecules reported in the literature to target SLCs are poorly characterized. Both features may be due to the difficulty of developing SLC transport assays that fulfill the quality criteria for high-throughput screening. Here, we report one of the main limitations hampering assay development within the RESOLUTE consortium: the lack of a resource providing high-quality information on SLC tool compounds. To address this, we provide a systematic annotation of tool compounds targeting SLCs. We first provide an overview on RESOLUTE assays. Next, we present a list of SLC-targeting compounds collected from the literature and public databases; we found that most data sources lacked specificity data. Finally, we report on experimental tests of 19 selected compounds against a panel of 13 SLCs from seven different families. Except for a few inhibitors, which were active on unrelated SLCs, the tested inhibitors demonstrated high selectivity for their reported targets. To make this knowledge easily accessible to the scientific community, we created an interactive dashboard displaying the collected data in the RESOLUTE web portal (https://re-solute.eu). We anticipate that our open-access resources on assays and compounds will support the development of future drug discovery campaigns for SLCs.

8.
ACS Chem Biol ; 19(7): 1554-1562, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920052

RESUMEN

Small molecular tool compounds play an essential role in the study of G protein-coupled receptors (GPCRs). However, tool compounds most often occupy the orthosteric binding site, hampering the study of GPCRs upon ligand binding. To overcome this problem, ligand-directed labeling techniques have been developed that leave a reporter group covalently bound to the GPCR, while allowing subsequent orthosteric ligands to bind. In this work, we applied such a labeling strategy to the adenosine A2B receptor (A2BAR). We have synthetically implemented the recently reported N-acyl-N-alkyl sulfonamide (NASA) warhead into a previously developed ligand and show that the binding of the A2BAR is not restricted by NASA incorporation. Furthermore, we have investigated ligand-directed labeling of the A2BAR using SDS-PAGE, flow cytometric, and mass spectrometry techniques. We have found one of the synthesized probes to specifically label the A2BAR, although detection was hindered by nonspecific protein labeling most likely due to the intrinsic reactivity of the NASA warhead. Altogether, this work aids the future development of ligand-directed probes for the detection of GPCRs.


Asunto(s)
Receptor de Adenosina A2B , Sulfonamidas , Ligandos , Sulfonamidas/química , Humanos , Receptor de Adenosina A2B/metabolismo , Receptor de Adenosina A2B/química , Sondas Moleculares/química , Sitios de Unión , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Células HEK293 , Unión Proteica
9.
Purinergic Signal ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879664

RESUMEN

The human equilibrative nucleoside transporter 1 (SLC29A1, hENT1) is a solute carrier that modulates the passive transport of nucleosides and nucleobases, such as adenosine. This nucleoside regulates various physiological processes, such as vasodilation and -constriction, neurotransmission and immune defense. Marketed drugs such as dilazep and dipyridamole have proven useful in cardiovascular afflictions, but the application of hENT1 inhibitors can be beneficial in a number of other diseases. In this study, 39 derivatives of dilazep's close analogue ST7092 were designed, synthesized and subsequently assessed using [3H]NBTI displacement assays and molecular docking. Different substitution patterns of the trimethoxy benzoates of ST7092 reduced interactions within the binding pocket, resulting in diminished hENT1 affinity. Conversely, [3H]NBTI displacement by potentially covalent compounds 14b, 14c, and 14d resulted in high affinities (Ki values between 1.1 and 17.5 nM) for the transporter, primarily by the ability of accommodating the inhibitors in various ways in the binding pocket. However, any indication of covalent binding with amino acid residue C439 remained absent, conceivably as a result of decreased nucleophilic residue reactivity. In conclusion, this research introduces novel dilazep derivatives that are active as hENT1 inhibitors, along with the first high affinity dilazep derivatives equipped with an electrophilic warhead. These findings will aid the rational and structure-based development of novel hENT1 inhibitors and pharmacological tools to study hENT1's function, binding mechanisms, and its relevance in (patho)physiological conditions.

10.
Front Pharmacol ; 15: 1372109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783936

RESUMEN

The prostaglandin transporter (PGT, SLCO2A1) mediates transport of prostanoids (a.o. prostaglandin E2 (PGE2)) into cells and thereby promotes their degradation. Overexpression of PGT leads to low extracellular PGE2 levels and has been linked to impaired wound healing of diabetic foot ulcers. Inhibition of PGT could thus be beneficial, however, no PGT inhibitors are currently on the market and drug discovery efforts are hampered by lack of high-through screening assays for this transporter. Here we report on a label-free impedance-based assay for PGT that measures transport activity through receptor activation (TRACT) utilizing prostaglandin E2 receptor subtype EP3 and EP4 that are activated by PGE2. We found that induction of PGT expression on HEK293-JumpIn-SLCO2A1 cells that also express EP3 and EP4 leads to an over 10-fold reduction in agonistic potency of PGE2. PGE2 potency could be recovered upon inhibition of PGT-mediated PGE2 uptake with PGT inhibitors olmesartan and T26A, the potency of which could be established as well. Moreover, the TRACT assay enabled the assessment of transport function of PGT natural variants. Lastly, HUVEC cells endogenously expressing prostanoid receptors and PGT were exploited to study wound healing properties of PGE2 and T26A in real-time using a novel impedance-based scratch-induced wound healing assay. These novel impedance-based assays will advance PGT drug discovery efforts and pave the way for the development of PGT-based therapies.

11.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612509

RESUMEN

Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Humanos , Reacciones Cruzadas , Descubrimiento de Drogas , Aprendizaje Automático , Neoplasias/tratamiento farmacológico
12.
Med Res Rev ; 44(5): 2291-2306, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38634664

RESUMEN

Chemokine receptors are relevant targets for a multitude of immunological diseases, but drug attrition for these receptors is remarkably high. While many drug discovery programs have been pursued, most prospective drugs failed in the follow-up studies due to clinical inefficacy, and hence there is a clear need for alternative approaches. Allosteric modulators of receptor function represent an excellent opportunity for novel drugs, as they modulate receptor activation in a controlled manner and display increased selectivity, and their pharmacological profile can be insurmountable. Here, we discuss allosteric ligands and their pharmacological characterization for modulation of chemokine receptors. Ligands are included if (1) they show clear signs of allosteric modulation in vitro and (2) display evidence of binding in a topologically distinct manner compared to endogenous chemokines. We discuss how allosteric ligands affect binding of orthosteric (endogenous) ligands in terms of affinity as well as binding kinetics in radioligand binding assays. Moreover, their effects on signaling events in functional assays and how their binding site can be elucidated are specified. We substantiate this with examples of published allosteric ligands targeting chemokine receptors and hypothetical graphs of pharmacological behavior. This review should serve as an effective starting point for setting up assays for characterizing allosteric ligands to develop safer and more efficacious drugs for chemokine receptors and, ultimately, other G protein-coupled receptors.


Asunto(s)
Receptores de Quimiocina , Humanos , Receptores de Quimiocina/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Ligandos
13.
ACS Chem Neurosci ; 15(7): 1424-1431, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478848

RESUMEN

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Ácido Glutámico , Transportador 2 de Aminoácidos Excitadores/metabolismo , Impedancia Eléctrica , Ácido Glutámico/metabolismo , Transporte Biológico , Transportador 3 de Aminoácidos Excitadores/metabolismo
14.
Chembiochem ; 25(7): e202300785, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372466

RESUMEN

The cannabinoid receptor type 2 (CB2R) is a G protein-coupled receptor with therapeutic potential for the treatment of inflammatory disorders. Fluorescent probes are desirable to study its receptor localization, expression and occupancy. Previously, we have reported a photoaffinity probe LEI-121 that stabilized the inactive conformation of the CB2R. Here, we report the structure-based design of a novel bifunctional probe that captures the active conformation of the CB2R upon irradiation with light. An alkyne handle was incorporated to visualize the receptor using click-chemistry with fluorophore-azides. These probes may hold promise to study different receptor conformations in relation to their cellular localization and function.


Asunto(s)
Cannabinoides , Colorantes Fluorescentes , Receptores de Cannabinoides , Colorantes Fluorescentes/química , Conformación Molecular , Receptores Acoplados a Proteínas G
15.
Purinergic Signal ; 20(2): 193-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37423967

RESUMEN

Evaluation of kinetic parameters of drug-target binding, kon, koff, and residence time (RT), in addition to the traditional in vitro parameter of affinity is receiving increasing attention in the early stages of drug discovery. Target binding kinetics emerges as a meaningful concept for the evaluation of a ligand's duration of action and more generally drug efficacy and safety. We report the biological evaluation of a novel series of spirobenzo-oxazinepiperidinone derivatives as inhibitors of the human equilibrative nucleoside transporter 1 (hENT1, SLC29A1). The compounds were evaluated in radioligand binding experiments, i.e., displacement, competition association, and washout assays, to evaluate their affinity and binding kinetic parameters. We also linked these pharmacological parameters to the compounds' chemical characteristics, and learned that separate moieties of the molecules governed target affinity and binding kinetics. Among the 29 compounds tested, 28 stood out with high affinity and a long residence time of 87 min. These findings reveal the importance of supplementing affinity data with binding kinetics at transport proteins such as hENT1.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Tioinosina , Humanos , Transporte Biológico , Tioinosina/metabolismo , Tioinosina/farmacología , Tranportador Equilibrativo 1 de Nucleósido/química , Tranportador Equilibrativo 1 de Nucleósido/metabolismo
16.
Front Mol Biosci ; 10: 1286673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074092

RESUMEN

Glutamate is an essential excitatory neurotransmitter and an intermediate for energy metabolism. Depending on the tumor site, cancer cells have increased or decreased expression of excitatory amino acid transporter 1 or 2 (EAAT1/2, SLC1A3/2) to regulate glutamate uptake for the benefit of tumor growth. Thus, EAAT1/2 may be an attractive target for therapeutic intervention in oncology. Genetic variation of EAAT1 has been associated with rare cases of episodic ataxia, but the occurrence and functional contribution of EAAT1 mutants in other diseases, such as cancer, is poorly understood. Here, 105 unique somatic EAAT1 mutations were identified in cancer patients from the Genomic Data Commons dataset. Using EAAT1 crystal structures and in silico studies, eight mutations were selected based on their close proximity to the orthosteric or allosteric ligand binding sites and the predicted change in ligand binding affinity. In vitro functional assessment in a live-cell, impedance-based phenotypic assay demonstrated that these mutants differentially affect L-glutamate and L-aspartate transport, as well as the inhibitory potency of an orthosteric (TFB-TBOA) and allosteric (UCPH-101) inhibitor. Moreover, two episodic ataxia-related mutants displayed functional responses that were in line with literature, which confirmed the validity of our assay. Of note, ataxia-related mutant M128R displayed inhibitor-induced functional responses never described before. Finally, molecular dynamics (MD) simulations were performed to gain mechanistic insights into the observed functional effects. Taken together, the results in this work demonstrate 1) the suitability of the label-free phenotypic method to assess functional variation of EAAT1 mutants and 2) the opportunity and challenges of using in silico techniques to rationalize the in vitro phenotype of disease-relevant mutants.

17.
Nat Commun ; 14(1): 8039, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052772

RESUMEN

Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.


Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Animales , Ratones , Rimonabant , Endocannabinoides , Analgésicos/farmacología , Receptor Cannabinoide CB1 , Ratones Endogámicos C57BL
18.
Biochem Pharmacol ; 218: 115924, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37972874

RESUMEN

Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.


Asunto(s)
Cannabidiol , Cannabidiol/farmacología , Receptores de Cannabinoides/metabolismo , beta-Arrestina 1/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptor Cannabinoide CB2/metabolismo , Dronabinol , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides
19.
ChemMedChem ; 18(20): e202300464, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37817354

RESUMEN

The 17th EFMC Short Course on Medicinal Chemistry took place April 23-26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.


Asunto(s)
Química Farmacéutica , Diseño de Fármacos , Europa (Continente) , Proteolisis , Sudáfrica
20.
J Cheminform ; 15(1): 74, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641107

RESUMEN

Proteochemometric (PCM) modelling is a powerful computational drug discovery tool used in bioactivity prediction of potential drug candidates relying on both chemical and protein information. In PCM features are computed to describe small molecules and proteins, which directly impact the quality of the predictive models. State-of-the-art protein descriptors, however, are calculated from the protein sequence and neglect the dynamic nature of proteins. This dynamic nature can be computationally simulated with molecular dynamics (MD). Here, novel 3D dynamic protein descriptors (3DDPDs) were designed to be applied in bioactivity prediction tasks with PCM models. As a test case, publicly available G protein-coupled receptor (GPCR) MD data from GPCRmd was used. GPCRs are membrane-bound proteins, which are activated by hormones and neurotransmitters, and constitute an important target family for drug discovery. GPCRs exist in different conformational states that allow the transmission of diverse signals and that can be modified by ligand interactions, among other factors. To translate the MD-encoded protein dynamics two types of 3DDPDs were considered: one-hot encoded residue-specific (rs) and embedding-like protein-specific (ps) 3DDPDs. The descriptors were developed by calculating distributions of trajectory coordinates and partial charges, applying dimensionality reduction, and subsequently condensing them into vectors per residue or protein, respectively. 3DDPDs were benchmarked on several PCM tasks against state-of-the-art non-dynamic protein descriptors. Our rs- and ps3DDPDs outperformed non-dynamic descriptors in regression tasks using a temporal split and showed comparable performance with a random split and in all classification tasks. Combinations of non-dynamic descriptors with 3DDPDs did not result in increased performance. Finally, the power of 3DDPDs to capture dynamic fluctuations in mutant GPCRs was explored. The results presented here show the potential of including protein dynamic information on machine learning tasks, specifically bioactivity prediction, and open opportunities for applications in drug discovery, including oncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...