RESUMEN
We report the synthesis and characterization of two novel cisplatin- alkylating agents conjugates. Combining a platinum based cytostatic agent with a sterically demanding alkylating agent could potentially induce further DNA damage, block cell repair mechanisms and keep the substrate active against resistant tumor cell lines. The 3-chloropiperidines utilized as ligands in this work are cyclic representatives of the N-mustard family and were not able to coordinate platinum on their own. The introduction of a second coordination site, in form of a pyridine moiety, led to the isolation of the desired conjugates. They were characterized with HRMS, CHN-analyses and XRD. We concluded this work by examining the cytotoxicity of the ligands and the obtained complexes with MTT assays in human cancer cell lines. While the ligands showed hardly any activity, the novel conjugates both displayed a high antiproliferative and cytotoxic potency in a panel of three cell lines. Moreover, both complexes were able to largely circumvent the acquired cisplatin resistance of A2780cisR ovarian cancer cells, both in the MTT assay and a flow-cytometric apoptosis assay.
RESUMEN
In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.
Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Estructura Molecular , Modelos Moleculares , Línea Celular Tumoral , Antineoplásicos/química , Ciclo Celular , Rutenio/farmacología , Rutenio/química , Complejos de Coordinación/químicaRESUMEN
The reaction of (1R,2R)-(cyclohexane-1,2-diamine)dichloridoplatinum(II) with maleic acid unexpectedly resulted in the formation of an organometallic platinum(II) complex featuring a C,O-coordinating ligand. Additionally, a small series of close derivatives with increasing lipophilicity was synthesized. All complexes were fully characterized by multinuclear one- and two-dimensional (1H, 13C, 15N, and 195Pt) NMR spectroscopy, high resolution mass spectrometry, and in one case by X-ray diffraction. The lipophilicity and the impact on the DNA secondary structure as well as the cytotoxic properties in three human cancer cell lines (A549, SW480, and CH1/PA-1) were investigated. Unexpectedly, no clear-cut trend in cytotoxicity was observed with increasing lipophilicity. Also unexpectedly, the complexes showed only a low potential to inhibit cancer cell growth and no sign of interaction with DNA, in sharp contrast to the parent drug oxaliplatin, which seems to be caused by the low reactivity of the investigated compounds.
Asunto(s)
Antineoplásicos , Platino (Metal) , Humanos , Platino (Metal)/química , Compuestos Organoplatinos/química , Línea Celular Tumoral , Antineoplásicos/química , ADN , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.
RESUMEN
The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O-), (S,O-) and (N,O-) chelates are described. Complexes were characterized by 1H and 13C NMR, elemental analysis, ESI-mass spectrometry, FT-IR spectroscopy and X-ray diffraction analysis. The aqueous stability was studied by UV/Vis spectroscopy and the WIV to WV process by cyclic voltammetry. The cytotoxicity was determined by the MTT assay in A549, CH1/PA-1 and SW480 cancer cells as well as in IMR-90 human fibroblasts. Extensive biological evaluation was performed in three other human cancer cell lines (HCT116, HT29 and MCF-7) in monolayer and multicellular tumor spheroid cultures to better understand the mode of action. Lead compounds showed promising in vitro anticancer activity in all cancer cell lines. Further studies yielded important insights into apoptosis induction, ROS generation, different patterns in metal distribution (detected by LA-ICP-TOF-MS), changes in KI67 (proliferation marker) expression and DNA interactions. The results based on qualitative and quantitative research designs show that complexes containing (S,O-) chelates are more active than their (O,O-) and (N,O-) counterparts. The most striking results in spheroid models are the high antiproliferative capacity and the different distribution pattern of two complexes differing only in a W-S or W-O bond.
RESUMEN
Based on their drug delivery properties and activity against tumors, we combined PAMAM dendrimers with various platinum(IV) complexes in order to provide an improved approach of anticancer treatment. Platinum(IV) complexes were linked to terminal NH2 moieties of PAMAM dendrimers of generation 2 (G2) and 4 (G4) via amide bonds. Conjugates were characterized by 1H and 195Pt NMR spectroscopy, ICP-MS and in representative cases by pseudo-2D diffusion-ordered NMR spectroscopy. Additionally, the reduction behavior of conjugates in comparison to corresponding platinum(IV) complexes was investigated, showing a faster reduction of conjugates. Cytotoxicity was evaluated via the MTT assay in human cell lines (A549, CH1/PA-1, SW480), revealing IC50 values in the low micromolar to high picomolar range. The synergistic combination of PAMAM dendrimers and platinum(IV) complexes resulted in up to 200 times increased cytotoxic activity of conjugates in consideration of the loaded platinum(IV) units compared to their platinum(IV) counterparts. The lowest IC50 value of 780 ± 260 pM in the CH1/PA-1 cancer cell line was detected for an oxaliplatin-based G4 PAMAM dendrimer conjugate. Finally, in vivo experiments of a cisplatin-based G4 PAMAM dendrimer conjugate were performed based on the best toxicological profile. A maximum tumor growth inhibition effect of 65.6% compared to 47.6% for cisplatin was observed as well as a trend of prolonged animal survival.
RESUMEN
A series of six highly lipophilic Cp-substituted molybdenocenes bearing different bioactive chelating ligands was synthesized and characterized by NMR spectroscopy, mass spectrometry and X-ray crystallography. In vitro experiments showed a greatly increased cytotoxic potency when compared to the non-Cp-substituted counterparts. In vivo experiments performed with the dichlorido precursor, (Ph2 C-Cp)2 MoCl2 and the inâ vitro most active complex, containing the thioflavone ligand, showed an inhibition of tumour growth. Proteomic studies on the same two compounds demonstrated a significant regulation of tubulin-associated and mitochondrial inner membrane proteins for both compounds and a strong metabolic effect of the thioflavone containing complex.
Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Estructura Molecular , Proteómica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Quelantes/química , Cristalografía por Rayos X , Ligandos , Línea Celular TumoralRESUMEN
Combining therapeutic with diagnostic agents (theranostics) can revolutionize the course of malignant diseases. Chemotherapy, hyperthermia, or radiation are used together with diagnostic methods such as magnetic resonance imaging (MRI). In contrast to conventional contrast agents (CAs), which only enable non-specific visualization of tissues and organs, the theranostic probe offers targeted diagnostic imaging and therapy simultaneously. METHODS: Novel salinomycin (Sal)-based theranostic probes comprising two different paramagnetic metal ions, gadolinium(III) (Gd(III)) or manganese(II) (Mn(II)), as signal emitting motifs for MRI were synthesized and characterized by elemental analysis, infrared spectral analysis (IR), electroparamagnetic resonance (EPR), thermogravimetry (TG) differential scanning calorimetry (DSC) and electrospray ionization mass spectrometry (ESI-MS). To overcome the water insolubility of the two Sal-complexes, they were loaded into empty bacterial ghosts (BGs) cells as transport devices. The potential of the free and BGs-loaded metal complexes as theranostics was evaluated by in vitro relaxivity measurements in a high-field MR scanner and in cell culture studies. RESULTS: Both the free Sal-complexes (Gd(III) salinomycinate (Sal-Gd(III) and Mn(II) salinomycinate (Sal-Mn(II)) and loaded into BGs demonstrated enhanced cytotoxic efficacy against three human tumor cell lines (A549, SW480, CH1/PA-1) relative to the free salinomycinic acid (Sal-H) and its sodium complex (Sal-Na) applied as controls with IC50 in a submicromolar concentration range. Moreover, Sal-H, Sal-Gd(III), and Sal-Mn(II) were able to induce perturbations in the cell cycle of treated colorectal and breast human cancer cell lines (SW480 and MCF-7, respectively). The relaxivity (r1) values of both complexes as well as of the loaded BGs, were higher or comparable to the relaxivity values of the clinically applied contrast agents gadopentetate dimeglumine and gadoteridol. CONCLUSION: This research is the first assessment that demonstrates the potential of Gd(III) and Mn(II) complexes of Sal as theranostic agents for MRI. Due to the remarkable selectivity and mode of action of Sal as part of the compounds, they could revolutionize cancer therapy and allow for early diagnosis and monitoring of therapeutic follow-up.
RESUMEN
The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity.
RESUMEN
Trithiolato-bridged dinuclear ruthenium(II) complexes [Ru2(p-cym)2(SR)3]Cl (p-cym = p-cymene, R = benzyl derivatives) are regarded as the most cytotoxically potent metal(II) arene antineoplastics, but are oftentimes limited by their poor solubility in aqueous media. Thus, we designed bisphosphonate-functionalized ligands for use in a modular two-step complexation process to synthesize six trithiolato-bridged dinuclear ruthenium(II) and osmium(II) arene complexes bearing one to three bisphosphonate-benzylmercaptane derived ligands. In addition to improved aqueous solubility the high affinity of bisphosphonates towards apatite structures found in bone and bone metastases may grant selective targeting properties to functionalized organometallics. The complex stabilities and hydroxyapatite binding behavior were determined by UV/Vis spectroscopy. The bisphosphonate functionalization decreases antiproliferative activity in vitro, which was correlated to lower cellular accumulation, due to the different lipophilic profiles of the drug candidates.
Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Difosfonatos/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Difosfonatos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Osmio/química , Rutenio/química , Solubilidad , Agua/químicaRESUMEN
A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.
Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Naftoquinonas/farmacología , Rutenio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Naftoquinonas/química , Rutenio/química , Agua/químicaRESUMEN
The synergistic combination of the anticancer drug carboplatin and the iron chelator deferoxamine (DFO) served as a foundation for the development of novel multifunctional prodrugs. Hence, five platinum(iv) complexes, featuring the equatorial coordination sphere of carboplatin, and one or two DFO units incorporated at axial positions, were synthesized and characterized using ESI-HRMS, multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy and elemental analysis. Analytical studies demonstrated that the chelating properties of the DFO moiety were not compromised after coupling to the platinum(iv) core. The cytotoxic activity of the compounds was evaluated in monolayer (2D) and spheroid (3D) cancer cell models, derived from ovarian teratocarcinoma (CH1/PA-1), colon carcinoma (SW480) and non-small cell lung cancer (A549). The platinum(iv)-DFO prodrugs demonstrated moderate in vitro cytotoxicity (a consequence of their slow activation kinetics) but with less pronounced differences between intrinsically chemoresistant and chemosensitive cell lines as well as between 2D and 3D models than the clinically used platinum(ii) drug carboplatin.
Asunto(s)
Antineoplásicos/farmacología , Carboplatino/farmacología , Deferoxamina/farmacología , Compuestos Organoplatinos/farmacología , Profármacos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Carboplatino/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Deferoxamina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Profármacos/síntesis química , Profármacos/química , Células Tumorales CultivadasRESUMEN
A series of 15 piano-stool complexes featuring either a RuII, RhIII or IrIII metal center, a bidentate thiopyridone ligand, and different leaving groups was synthesized. The leaving groups were selected in order to cover a broad range of different donor atoms. Thus, 1-methylimidazole served as a N-donor, 1,3,5-triaza-7-phosphaadamantane (pta) as a P-donor, and thiourea as a S-donor. Additionally, three complexes featuring different halido leaving groups (Cl, Br, I) were added. Leaving group alterations were carried out with respect to a possible influence on pharmacokinetic and pharmacodynamic parameters, as well as the cytotoxicity of the respective compounds. The complexes were characterized via NMR spectroscopy, X-ray diffraction (where possible), mass spectrometry, and elemental analysis. Cytotoxicity was assessed in 2D cultures of human cancer cell lines by microculture and clonogenic assays as well as in multicellular tumor spheroids. Furthermore, cellular accumulation studies, flow-cytometric apoptosis and ROS assays, DNA plasmid assays, and laser ablation ICP-MS studies for analyzing the distribution in sections of multicellular tumor spheroids were conducted. This work demonstrates the importance of investigating each piano-stool complexes' properties, as the most promising candidates showed advantages over each other in certain tests/assays. Thus, it was not possible to single out one lead compound, but rather a group of complexes with enhanced cytotoxicity and activity.
Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Nitrógeno/química , Fósforo/química , Piridonas/química , Azufre/química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Iridio/química , Especies Reactivas de Oxígeno/metabolismo , Rodio/química , Rutenio/químicaRESUMEN
A series of 2-phenylbenzothiazole derivatives and their corresponding organometallic ruthenium(II) and osmium(II) complexes were synthesized, designed to exploit both, the attributes of the half-sandwich transition metal scaffold and the bioactivity spectrum of the applied 2-phenylbenzothiazoles. All synthesized compounds were characterized via standard analytical methods. The obtained organometallics showed antiproliferative activity in the low µM range and are thus at least an order of magnitude more potent than the free ligands. ESI-MS measurements showed that the examined compounds were stable in aqueous solution over 48 h. Additionally, their binding preferences to small biomolecules, their cellular accumulation and capacity of inducing apoptosis/necrosis were investigated. Based on the fluorescence properties of the selected ligand and the corresponding ruthenium complex, their subcellular distribution was studied by fluorescence microscopy, revealing a high degree of colocalization with acidic organelles of cancer cells.
RESUMEN
Novel phthiocol-based organometallics with in situ formed tridentate N,O,O-coordination motif were established via three-component microwave assisted one-pot reaction. These complexes exhibited enhanced stability in aqueous solution compared to the parental compound KP2048 and showed unexpected cytotoxic behaviour and selectivity in 2D and 3D cell cultures.
Asunto(s)
Antineoplásicos/toxicidad , Naftoquinonas/toxicidad , Compuestos Organometálicos/toxicidad , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Naftoquinonas/química , Naftoquinonas/farmacología , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Relación Estructura-ActividadRESUMEN
A series of 16 dinuclear thiopyridone-based organometallics with excellent water solubility, increased stability and remarkable cytotoxicity were synthesized and characterized. The complexes of this work formed dimeric species featuring a double positive charge in polar protic solvents, accounting for their outstanding solubility in aqueous solution. Most of them displayed higher antiproliferative activity than their parental thiomaltol complex, with unexpected cytotoxicity trends depending on the employed metal center, ligand modification, and cell line. Insights into their behavior in biological systems were gathered by means of amino-acid interaction studies, cytotoxicity tests in 3D spheroid models, laser ablation, cellular accumulation measurements, as well as cell cycle experiments.
Asunto(s)
Complejos de Coordinación/síntesis química , Piranos/síntesis química , Tionas/síntesis química , Ciclo Celular , Línea Celular Tumoral , Complejos de Coordinación/química , Biblioteca de Genes , Humanos , Ligandos , Piranos/química , Solubilidad , Tionas/químicaRESUMEN
The synthesis, characterization and biological activity of molybdenum(IV) complexes containing Trofimenko's scorpionato ligand, hydrotris(3-isopropylpyrazolyl)borate (TpiPr ), in addition to varying biologically active as well as other conventional ligands is described. Ligands employed include (O,O-) (S,O-) (N,N-) donors that have been successfully coordinated to the molybdenum center by means of oxygen-atom transfer (OAT) reactions from the known MoVI starting material, TpiPr MoO2 Cl. The synthesized complexes were characterized by standard analytical methods and where possible by X-ray diffraction analysis. The aqueous stability of the compounds was studied by means of UV/Vis spectroscopy and the impact of the attached ligand scaffolds on the oxidation potentials (MoIV to MoV ) was studied by cyclic voltammetry. Utilizing polyvinylpyrrolidone (PVP) as a solubilizing agent, adequate aqueous solubility for biological tests was obtained. Anticancer activity tests and preliminary mode of action studies have been performed in vitro and in vivo.
Asunto(s)
Antineoplásicos/química , Boratos/química , Complejos de Coordinación/química , Molibdeno/química , Pirazoles/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Humanos , Ligandos , Ratones , Ratones Endogámicos BALB C , Conformación Molecular , Neoplasias/tratamiento farmacológico , Nitrógeno/química , Oxígeno/química , Azufre/químicaRESUMEN
Fine-tuning of the properties of a recently reported 1,3-indandione-based organoruthenium complex is attempted to optimize the stability under physiological conditions. Previous work has shown its capacity of inhibiting topoisomerase IIα; however, fast aquation leads to undesired reactions and ligand cleavage in the blood stream before the tumor tissue is reached. Exchange of the chlorido ligand for six different N-donor ligands resulted in new analogs that were stable at pH 7.4 and 8.5. Only a lowered pH level, as encountered in the extracellular space of the tumor tissue, was capable of aquating the complexes. The 50% inhibitory concentration (IC50) values in three human cancer cell lines differed only slightly, and their dependence on the utilized leaving group was smaller than what would be expected from their differences in cellular accumulation, but in accordance with the very minor variation revealed in measurements of the complexes' lipophilicity.
Asunto(s)
Complejos de Coordinación/síntesis química , Cimenos/síntesis química , Rutenio/química , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cimenos/química , Cimenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Estructura MolecularRESUMEN
A series of 11 novel ruthenium(ii) arene complexes [Ru(p-cym)(trzC^N)L]NO3 based on the cycloruthenated 1,2,3-triazole scaffold (trzC^N) bearing different N- or S-donor leaving groups (L) were prepared. These complexes exhibited strongly diverging pH-dependent stability profiles, but consistently exerted antiproliferative effects in the low micromolar range in three cancer cell lines (A549, SW480, CH1/PA-1). The interaction with biomolecules was correlated to dissociation of the monodentate leaving group. Under oxidative conditions, the stably bound dimethylsulfide ligand (3a) undergoes oxidation, while metal coordination is maintained, affording the labile DMSO complex (3b). Rationalization of the homogenous antiproliferative activities was attempted by determination of the cellular accumulation and lipophilicity indices (φ0). Investigations on their mechanism of action revealed that these metalacycles are inducers of apoptosis, exert a slight antioxidative effect in cell culture studies, but have no DNA intercalatory activity.
Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Nitrógeno/química , Rutenio/química , Azufre/química , Triazoles/química , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Estructura MolecularRESUMEN
Platinum-based anticancer coordination compounds are widely used in the treatment of many tumor types, where they are very effective but also cause severe side effects. Organoplatinum compounds are significantly less investigated than the analogous coordination compounds. We report here rollover cyclometalated Pt compounds based on 2,2'-bipyridine which are demonstrated to be potent antitumor agents both in vitro and in vivo. Variation of the co-ligands on the Pt(2,2'-bipyridine) backbone resulted in the establishment of structure-activity relationships. They showed that the biological activity was in general inversely correlated with the reaction kinetics to biomolecules as shown for amino acids, proteins, and DNA. The less stable compounds caused higher reactivity with biomolecules and were shown to induce p53-dependent DNA damage. In contrast, the presence of bulky PTA and PPh3 ligands was demonstrated to cause lower reactivity and increased antineoplastic activity. Such compounds were devoid of DNA-damaging activity and induced ATF4, a component of the endoplasmic reticulum (ER) stress pathway. The lead complex inhibited tumor growth similar to oxaliplatin while showing no signs of toxicity in test mice. Therefore, we demonstrated that it is possible to fine-tune rollover-cyclometalated Pt(II) compounds to target different cancer pathways and be a means to overcome the side effects associated with cisplatin and analogous compounds in cancer chemotherapy.