Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 10(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888570

RESUMEN

Nutrition and health during pre-weaning affect the calves' future fertility, calving age, production, and carrier length. Calves are highly susceptible to neonatal calf diarrhea (NCD), which can be fatal. NCD is due to hypovolemia and acidosis, which may involve anorexia and ataxia. The One Health principle calls for a drastic reduction in antimicrobial use. One approach is to improve animal health and reduce the use of antibiotics and functional ingredients that have beneficial effects due to bioactive compounds. Several functional ingredients and additives can be considered, and, in particular for this study, Ascophyllum nodosum was considered. The present study aimed to evaluate the role of A. nodosum as a functional ingredient implemented into the milk replacer in neonatal calves. Twelve pre-weaned Holstein Frisian calves, housed in twelve individual pens in the same environmental conditions, were divided into two groups of six animals: a control group (CTRL, n = 6) fed with a milk replacer, and a treatment group receiving milk enriched with 10 g of A. nodosum in their diet (TRT, n = 6) for 42 days. The fecal score was evaluated daily (3-0 scale) to monitor the incidence of diarrhea in the two groups. The body weight was evaluated weekly, and every two weeks feces were collected for microbiological evaluation using a selective medium for plate counting of total, lactic acid, and coliform bacteria. To verify the presence of Lactobacillus, Bifidobacterium, and Escherichia coli, real-time qPCR was used. At the beginning and at the end of the trial, blood samples were obtained for serum metabolite analysis. The growth performance did not differ in either of the two groups, but significant differences were observed in the incidence of moderate diarrhea (p-value < 0.0113), where the TRT group showed a lower incidence of cases during the 42-day period. Serum analysis highlighted higher contents of albumin, calcium, phosphorus, and total cholesterol in the TRT group compared to CTRL (p-value < 0.05). In conclusion, implementation of A. nodosum in the diet of calves can lead to better animal welfare and may reduce the use of antibiotics.

2.
Vet Res Commun ; 47(1): 217-231, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35616772

RESUMEN

Post Weaning Diarrhea (PWD) is the most important multifactorial gastroenteric disease of the weaning in pig livestock. Phytogenic (PHY) natural extracts are largely studied as alternatives to antibiotic treatments in combating the global concern of the antimicrobial resistance. The aim of this study was to evaluate the protective effect of innovative phytogenic premix with or without short and medium chain fatty acids (SCFA and MCFA) in O138 Escherichia coli challenged piglets. Twenty-seven weaned piglets were allotted into four groups fed different diets according to the following dietary treatments: CTRL (n = 13) group fed basal diet, PHY1 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix, PHY2 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix added with 2000 ppm of SCFA and MCFA. After 6 days of experimental diet feeding, animals were challenged (day 0) with 2 × 109 CFU of E. coli and CTRL group was divided at day 0 into positive (challenged CTRL + ; n = 6) and negative control group (unchallenged CTRL-; n = 7). Body weights were recorded at -14, -6, 0, 4 and 7 days and the feed intake was recorded daily. E. coli shedding was monitored for 4 days post-challenge by plate counting. Fecal consistency was registered daily by a four-point scale (0-3; diarrhea > 1) during the post-challenge period. Tissue samples were obtained for gene expression and histological evaluations at day 7 from four animals per group. Lower average feed intake was observed in CTRL + compared to PHY2 and CTRL during the post-challenge period. Infected groups showed higher E. coli shedding compared to CTRL- during the 4 days post-challenge (p < 0.01). PHY2 showed lower frequency of diarrhea compared to PHY1 and CTRL + from 5 to 7 days post-challenge. No significant alterations among groups were observed in histopathological evaluation. Duodenum expression of occludin tended to be lower in challenged groups compared to CTRL- at 7 days post-challenge (p = 0.066). In conclusion, dietary supplementation of PHY plus SCFA and MCFA revealed encouraging results for diarrhea prevention and growth performance in weaned piglets.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Porcinos , Animales , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Diarrea/prevención & control , Diarrea/veterinaria , Dieta/veterinaria , Ácidos Grasos/farmacología , Alimentación Animal/análisis , Enfermedades de los Porcinos/prevención & control
3.
J Anim Sci ; 100(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271913

RESUMEN

Botanicals exhibit promising impacts on intestinal health, immune-regulation, and growth promotion in weaned pigs. However, these benefits may vary depending on major active components in the final feed additive products. Therefore, this study aimed to investigate two types of botanical blends (BB) that were comprised of 0.3% capsicum oleoresin and 12% garlic extracts from different sources on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. Sixty weanling pigs (7.17 ± 0.97 kg body weight (BW)) blocked by weight and gender were assigned to one of five dietary treatments: negative control (NC), positive control (PC), or dietary supplementation with 100 mg/kg of BB1, 50 mg/kg or 100 mg/kg of BB2. This study lasted 28 d with 7 d before and 21 d after the first E. coli inoculation (day 0). All pigs, except negative control, were orally inoculated with 1010 cfu E. coli F18/3-mL dose for 3 consecutive days. Blood samples were collected periodically to analyze systemic immunity. Intestinal tissues and mucosa were collected on days 5 and 21 PI for analyzing histology and gene expression. All data, except for frequency of diarrhea, were analyzed by ANOVA using the PROC MIXED of SAS. The Chi-square test was used for analyzing frequency of diarrhea. Escherichia coli infection reduced (P < 0.05) growth rate and feed intake and increased (P < 0.05) frequency of diarrhea of weaned pigs throughout the experiment. Supplementation of 100 mg/kg BB1 or BB2 alleviated (P < 0.05) frequency of diarrhea of E. coli challenged pigs during the entire experiment. Escherichia coli infection also enhanced (P < 0.05) serum TNF-α and haptoglobin concentrations on day 4 post-inoculation (PI) but reduced (P < 0.05) duodenal villi height and area on day 5 PI, while pigs supplemented with 100 mg/kg BB1 or BB2 had lower (P < 0.05) serum TNF-α than pigs in PC on day 4 PI. Pigs fed with 100 mg/kg BB2 had higher (P < 0.05) jejunal villi height than pigs in PC on day 5 PI. Pigs fed with 100 mg/kg BB2 had reduced (P < 0.05) gene expression of IL1B, PTGS2, and TNFA in ileal mucosa than pigs in PC on day 21 PI. In conclusion, dietary supplementation of botanical blends at 100 mg/kg could enhance disease resistance of weaned pigs infected with E. coli F18 by enhancing intestinal morphology and regulating local and systemic immunity of pigs.


This experiment aimed to investigate two botanical blends consisting of 0.3% capsicum oleoresin and 12% garlic extracts on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. The two botanical blends have the same formulation, except that different garlic oils were used. A total of 60 weaned pigs were randomly allotted to one of five experimental treatments: 1) a complex control diet without E. coli F18 challenge; 2) control diet with E. coli F18 challenge; 3) supplementing 100 mg/kg of botanical blend type 1 to pigs challenged with E. coli F18; 4) and 5) supplementing 50 or 100 mg/kg of botanical blend type 2 to pigs challenged with E. coli F18. The experiment lasted 28 d with 7 d adaptation and 21 d after the first F18 E. coli inoculation. Results of this experiment demonstrate that supplementation of 100 mg/kg of botanical blend enhanced disease resistance and tended to improve growth of weaned pigs, regardless of garlic oil variety. An improved intestinal morphology and reduced systemic inflammation was also observed in pigs supplemented with 100 mg/kg of botanical blends. In conclusion, supplementation of 100 mg/kg of botanical blends could reduce diarrhea of E. coli infected pigs and modify local or systemic immunity of pigs.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Porcinos , Animales , Escherichia coli Enterotoxigénica/fisiología , Resistencia a la Enfermedad , Factor de Necrosis Tumoral alfa , Enfermedades de los Porcinos/tratamiento farmacológico , Destete , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Diarrea/veterinaria , Dieta/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-35805373

RESUMEN

The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Preparaciones Farmacéuticas , Aguas Residuales , Agua , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
5.
Animals (Basel) ; 11(6)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204108

RESUMEN

The effects of the dietary administration of a combination of Quebracho and Chestnut tannins, leonardite and tributyrin were evaluated in weaned piglets. A total of 168 weaned piglets (Landrace × Large White) were randomly allotted to two experimental groups (6 pens/group, 14 piglets/pen). Animals were fed a basal control diet (CTRL) and a treatment diet (MIX) supplemented with 0.75% tannin extracts, 0.25% leonardite and 0.20% tributyrin for 28 days. Individual body weight and feed intake were recorded weekly. Diarrhoea incidence was recorded by a faecal scoring scale (0-3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets/pen for microbiological and chemical analyses of faecal microbiota, which were then assessed by V3-V4 region amplification sequencing. At 28 days, blood from two piglets/pen was sampled to evaluate the serum metabolic profile. After 28 days, a reduction in diarrhoea incidence was observed in the MIX compared to CTRL group (p < 0.05). In addition, compared to CTRL, MIX showed a higher lactobacilli:coliform ratio and increased Prevotella and Fibrobacter genera presence (p < 0.01). The serum metabolic profile showed a decreased level of low-density lipoproteins in the treated group (p < 0.05). In conclusion, a combination of tannin extract, leonardite and tributyrin could decrease diarrhoea incidence and modulate the gut microbiota.

6.
Antioxidants (Basel) ; 10(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201645

RESUMEN

The objectives of the study were to test the biological activities of peppermint and spearmint oils via (i) measuring in vitro anti-inflammatory effects with porcine alveolar macrophages (PAMs), (ii) determining the barrier integrity of IPEC-J2 by analyzing transepithelial electrical resistance (TEER), (iii) testing their antioxidant activities, and (iv) investigating the antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) F18+. Briefly, (i) macrophages were seeded at 106 cells/mL and treated (24 h) with mint oils and lipopolysaccharide (LPS). The treatments were 2 (0 or 1 µg/mL of LPS) × 5 (0, 25, 50, 100, 200 µg/mL of mint oils). The supernatants were collected for TNF-α and IL-1ß measurement by ELISA; (ii) IPEC-J2 cells were seeded at 5 × 105 cells/mL and treated with mint oils (0, 25, 50, 100, and 200 µg/mL). TEER (Ωcm2) was measured at 0, 24, 48, and 72 h; (iii) the antioxidant activity was assessed (0, 1, 50, 100, 200, 500, and 600 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays; (iv) overnight-grown ETEC F18+ were quantified (CFU/mL) after supplementing with peppermint and spearmint oils (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL). All data were analyzed using the MIXED procedure. Both mint oils significantly inhibited (p < 0.05) IL-1ß and TNF-α secretion from LPS-stimulated PAMs. Mint oil treatments did not affect TEER in IPEC-J2. Spearmint and peppermint oils exhibited (p < 0.05) strong antioxidant activities in DPPH and reducing power assays. Both mint oils also dose-dependently inhibited (p < 0.05) the growth of ETEC F18+ in vitro. The results of the study indicated that both mint oils are great candidate feed additives due to their in vitro anti-inflammatory, antioxidant, and antimicrobial effects. Further research is needed to evaluate their efficacy in vivo.

7.
Artículo en Inglés | MEDLINE | ID: mdl-33668294

RESUMEN

Sustainable agriculture is aimed at long-term crop and livestock production with a minimal impact on the environment. However, agricultural practices from animal production can contribute to global pollution due to heavy metals from the feed additives that are used to ensure the nutritional requirements and also promote animal health and optimize production. The bioavailability of essential mineral sources is limited; thus, the metals are widely found in the manure. Via the manure, metallic ions can contaminate livestock wastewater, drastically reducing its potential recycling for irrigation. Phytoremediation, which is an efficient and cost-effective cleanup technique, could be implemented to reduce the wastewater pollution from livestock production, in order to maintain the water conservation. Plants use various strategies for the absorption and translocation of heavy metals, and they have been widely used to remediate livestock wastewater. In addition, the pollutants concentrated in the plants can be exhausted and used as heat to enhance plant growth and further concentrate the metals, making recycling a possible option. The biomass of the plants can also be used for biogas production in anaerobic fermentation. Combining phytoremediation and biorefinery processes would add value to both approaches and facilitate metal recovery. This review focuses on the concept of agro-ecology, specifically the excessive use of heavy metals in animal production, the various techniques and adaptations of the heavy-metal phytoremediation from livestock wastewater, and further applications of exhausted phytoremediated biomass.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Biodegradación Ambiental , Biomasa , Ganado , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Aguas Residuales
8.
Animals (Basel) ; 10(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105748

RESUMEN

In pig livestock, alternatives to in-feed antibiotics are needed to control enteric infections. Plant extracts such as tannins can represent an alternative as a natural source of functional compounds. The aim of this study was to evaluate the in vitro digestibility and in vivo effects of oral supplementation of combined chestnut (Ch) and quebracho (Qu) tannins in order to establish if they can induce a positive effect on weaned piglets' performance, metabolic status and fecal parameters. In vitro digestibility (dry matter, DM) of diets was calculated using a multi-step enzymatic technique. In vitro digested diet samples were further tested on an intestinal porcine enterocyte cell line (IPEC-J2). Weaned piglets (n = 120; 28 ± 2 day old) were randomly allotted to two groups (12 pens in total with 10 pigs per pen): control (Ctrl) and treatment (Ch/Qu). After one week of adaptation (day 0), 35-day-old piglets in the Ctrl group were fed a Ctrl diet and the Ch/Qu group were fed with 1.25% Ch/Qu for 40 days. Body weight and feed intake per pen were recorded weekly. At day 40, blood and fecal samples were collected. Principal metabolic parameters were evaluated from blood samples by enzymatic colorimetric analysis. Total phenolic compounds, urea, and ammonia in feces were analyzed (Megazyme International, Bray, Ireland). In vitro digestibility and cell viability assays showed that the inclusion of 1.25% Ch/Qu slightly reduced diet digestibility compared with the Ctrl diet, while intestinal cell viability was not altered with low concentrations of Ch/Qu digesta compared with Ctrl. In vivo results did not show any adverse effects of Ch/Qu on feed intake and growth performance, confirming that dietary inclusion of Ch/Qu at a concentration of 1.25% did not impair animal performance. The decreased diet DM digestibility in the Ch/Qu diet may cause increased serum concentration of albumin (Ctrl: 19.30 ± 0.88; Ch/Qu: 23.05 ± 0.88) and albumin/globulin ratio (Ctrl: 0.58 ± 0.04; Ch/Qu: 0.82 ± 0.04), but decreased creatinine (Ctrl: 78.92 ± 4.18; Ch/Qu: 54.82 ± 4.18) and urea (Ctrl: 2.18 ± 0.19; Ch/Qu: 0.95 ± 0.19) compared with Ctrl. Pigs in the Ch/Qu group contained higher (p < 0.05) concentrations of fecal phenolic compounds and nitrogen than the Ctrl group, while fecal ammonia and urea were not affected by tannins. In conclusion, Ch/Qu tannin supplementation did not influence growth performance. Although lower digestibility was observed in the diet supplemented with Ch/Qu tannins, Ch/Qu supplementation did not show any adverse effect on intestinal epithelial cell viability.

9.
Animals (Basel) ; 10(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331306

RESUMEN

The aim of this study was to investigate the effects of tributyrin supplementation on the production traits, the main metabolic parameters and gut microbiota in weaned piglets. One hundred and twenty crossbred piglets (Large White × Landrace) were randomly divided into two experimental groups (six pens each; 10 piglets per pen): the control group (CTRL), that received a basal diet, and the tributyrin group (TRIB) that received the basal diet supplemented with 0.2% tributyrin. The experimental period lasted 40 days. Production traits were measured at days 14, 28 and 40. A subset composed of 48 animals (n = 4 for each pen; n = 24 per group) was considered for the evaluation of serum metabolic parameters and hair cortisol by enzyme-linked immunosorbent assay (ELISA), and faecal microbiota by real-time polymerase chain reaction (PCR). Our results showed that the treatment significantly increased body weight (BW) at day 28 and day 40 (p = 0.0279 and p = 0.0006, respectively) and average daily gain (ADG) from day 28 to day 40 (p = 0.046). Gain to feed ratio (G:F) was significantly higher throughout the experimental period (p = 0.049). Even if the serum parameters were in the physiological range, albumin, albumin/globulin (A/G) ratio, glucose and high-density lipoproteins (HDL) fraction were significantly higher in the TRIB group. On the contrary, tributyrin significantly decreased the urea blood concentration (p = 0.0026), which was correlated with lean gain and feed efficiency. Moreover, serum insulin concentration, which has a regulatory effect on protein and lipid metabolism, was significantly higher in the TRIB group (p = 0.0187). In conclusion, this study demonstrated that tributyrin can be considered as a valid feed additive for weaned piglets.

10.
Chemosphere ; 240: 124915, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31563105

RESUMEN

In animal livestock heavy metals are widely used as feed additives to control enteric bacterial infections as well as to enhance the integrity of the immune system. As these metals are only partially adsorbed by animals, the content of heavy metals in manure and wastewaters causes soil and ground water contamination, with Zn2+ and Cu2+ being the most critical output from pig livestock. Phytoremediation is considered a valid strategy to improve the purity of wastewaters. This work studied the effect of Zn2+ and Cu2+ on the morphology and protein expression in Thelypteris palustris and Typha latifolia plants, cultured in a wetland pilot system. Despite the absence of macroscopic alterations, remodeling of cell walls and changes in carbohydrate metabolism were observed in the rhizomes of both plants and in leaves of Thelypteris palustris. However, similar modifications seemed to be determined by the alterations of different mechanisms in these plants. These data also suggested that marsh ferns are more sensitive to metals than monocots. Whereas toleration mechanisms seemed to be activated in Typha latifolia, in Thelypteris palustris the observed modifications appeared as slight toxic effects due to metal exposure. This study clearly indicates that both plants could be successfully employed in in situ phytoremediation systems, to remove Cu2+ and Zn2+ at concentrations that are ten times higher than the legal limits, without affecting plant growth.


Asunto(s)
Biodegradación Ambiental/efectos de los fármacos , Cobre/toxicidad , Tracheophyta/metabolismo , Typhaceae/metabolismo , Eliminación de Residuos Líquidos/métodos , Zinc/toxicidad , Animales , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Cobre/farmacocinética , Ganado , Estiércol , Proyectos Piloto , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas , Especificidad de la Especie , Porcinos , Tracheophyta/efectos de los fármacos , Typhaceae/efectos de los fármacos , Aguas Residuales/química , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad , Humedales , Zinc/farmacocinética
11.
Chemosphere ; 241: 125018, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683415

RESUMEN

Animal production is a source of heavy metals in livestock wastewater and also a key link in the food chain, with negative impacts on human and animal health. In intensive animal production systems, the most critical elements are zinc and copper. In order to development of innovative non-invasive strategies to reduce the environmental impact of livestock, this study assessed the ability of two plants, Typha latifolia and Thelypteris palustris, to bioaccumulate the heavy metals used in animal nutrition, from wastewater. Four mesocosms (width 2.0 m, length 2.0 m, 695 L of water, 210 kg of soil) were assembled outdoors at the Botanical Garden. Two of them were planted with T. latifolia (TL treated, n = 30; TL control, n = 30) and two with T. palustris (TP treated, n = 60; TP control, n = 60). In T0 a solution of a mineral additive premix (Zn 44.02 mg/L; Cu 8.63 mg/L) was dissolved in the treated mesocosms. At T0, d 15 (T1) and d 45 (T2) samples of roots, leaves, stems, soil and water were collected, dried, mineralized and analyzed using ICP-MS in order to obtain HMs content. We found that T. latifolia and T. palustris accumulate and translocate Zn, Cu from contaminated wastewater into plant tissues in a way that is directly related to the exposure time (T2 for Zn: 271.64 ±â€¯17.70, 409.26 ±â€¯17.70 for Cu: 47.54 ±â€¯3.56, 105.58 ±â€¯3.56 mg/kg of DM, respectively). No visual toxicity signs were observed during the experimental period. This phytoremediation approach could be used as an eco-sustainable approach to counteract the output of heavy metals.


Asunto(s)
Bioacumulación , Biodegradación Ambiental , Metales Pesados/farmacocinética , Typhaceae/metabolismo , Aguas Residuales/química , Animales , Cobre/farmacocinética , Ganado , Metales Pesados/análisis , Hojas de la Planta/química , Raíces de Plantas/química , Tracheophyta/crecimiento & desarrollo , Tracheophyta/metabolismo , Typhaceae/crecimiento & desarrollo , Zinc/análisis , Zinc/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...