Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 86(9): 6111-6125, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33843224

RESUMEN

Substituted 2,6-dicyanoanilines are versatile electron donor-acceptor compounds, which have recently received considerable attention, since they exhibit strong fluorescence and may have utility in the synthesis of fluorescent materials, non-natural photosynthetic systems, and materials with nonlinear optical properties. The majority of known synthetic procedures are, however, "stop-and-go" reaction processes involving time-consuming and waste-producing isolation and purification of product intermediates. Here, we present the synthesis of substituted 2,6-dicyanoanilines via atom-economical and eco-friendly one-pot processes, involving metal-free domino reactions, and their subsequent photochemical and photophysical measurements and theoretical calculations. These studies exhibit the existence of an easily tunable radical ion pair-based charge-transfer (CT) emission in the synthesized 2,6-dicyanoaniline-based electron donor-acceptor systems. The charge-transfer processes were explored by photochemical and radiation chemical measurements, in particular, based on femtosecond laser photolysis transient absorption spectroscopy and time-resolved emission spectroscopy, accompanied by pulse radiolysis and complemented by quantum chemical investigations employing time-dependent density-functional theory. This chromophore class exhibits a broad-wavelength-range fine-tunable charge recombination emission with high photoluminescence quantum yields up to 0.98. Together with its rather simple and cost-effective synthesis (using easily available starting materials) and customizable properties, it renders this class of compounds feasible candidates as potential dyes for future optoelectronic devices like organic light-emitting diodes (OLEDs).

2.
PLoS One ; 15(9): e0239495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32956417

RESUMEN

Cell-type specific gene expression profiles are needed for many computational methods operating on bulk RNA-Seq samples, such as deconvolution of cell-type fractions and digital cytometry. However, the gene expression profile of a cell type can vary substantially due to both technical factors and biological differences in cell state and surroundings, reducing the efficacy of such methods. Here, we investigated which factors contribute most to this variation. We evaluated different normalization methods, quantified the variance explained by different factors, evaluated the effect on deconvolution of cell type fractions, and examined the differences between UMI-based single-cell RNA-Seq and bulk RNA-Seq. We investigated a collection of publicly available bulk and single-cell RNA-Seq datasets containing B and T cells, and found that the technical variation across laboratories is substantial, even for genes specifically selected for deconvolution, and this variation has a confounding effect on deconvolution. Tissue of origin is also a substantial factor, highlighting the challenge of using cell type profiles derived from blood with mixtures from other tissues. We also show that much of the differences between UMI-based single-cell and bulk RNA-Seq methods can be explained by the number of read duplicates per mRNA molecule in the single-cell sample. Our work shows the importance of either matching or correcting for technical factors when creating cell-type specific gene expression profiles that are to be used together with bulk samples.


Asunto(s)
Linfocitos B/química , Análisis de Secuencia de ARN , Linfocitos T/química , Transcriptoma , Adulto , Composición de Base , Conjuntos de Datos como Asunto , Sangre Fetal/citología , Humanos , Recién Nacido , Análisis de Componente Principal , Análisis de la Célula Individual , Manejo de Especímenes
3.
J Pharmacokinet Pharmacodyn ; 46(3): 223-240, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30778719

RESUMEN

A mechanism-based biomarker model of TNFα-response, including different external provocations of LPS challenge and test compound intervention, was developed. The model contained system properties (such as kt, kout), challenge characteristics (such as ks, kLPS, Km, LPS, Smax, SC50) and test-compound-related parameters (Imax, IC50). The exposure to test compound was modelled by means of first-order input and Michaelis-Menten type of nonlinear elimination. Test compound potency was estimated to 20 nM with a 70% partial reduction in TNFα-response at the highest dose of 30 mg·kg-1. Future selection of drug candidates may focus the estimation on potency and efficacy by applying the selected structure consisting of TNFα system and LPS challenge characteristics. A related aim was to demonstrate how an exploratory (graphical) analysis may guide us to a tentative model structure, which enables us to better understand target biology. The analysis demonstrated how to tackle a biomarker with a baseline below the limit of detection. Repeated LPS-challenges may also reveal how the rate and extent of replenishment of TNFα pools occur. Lack of LPS exposure-time courses was solved by including a biophase model, with the underlying assumption that TNFα-response time courses, as such, contain kinetic information. A transduction type of model with non-linear stimulation of TNFα release was finally selected. Typical features of a challenge experiment were shown by means of model simulations. Experimental shortcomings of present and published designs are identified and discussed. The final model coupled to suggested guidance rules may serve as a general basis for the collection and analysis of pharmacological challenge data of future studies.


Asunto(s)
Factor de Necrosis Tumoral alfa/metabolismo , Animales , Biomarcadores/metabolismo , Lipopolisacáridos/farmacología , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley
4.
J Pharmacokinet Pharmacodyn ; 46(1): 75-87, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30673914

RESUMEN

Cortisol is a steroid hormone relevant to immune function in horses and other species and shows a circadian rhythm. The glucocorticoid dexamethasone suppresses cortisol in horses. Pituitary pars intermedia dysfunction (PPID) is a disease in which the cortisol suppression mechanism through dexamethasone is challenged. Overnight dexamethasone suppression test (DST) protocols are used to test the functioning of this mechanism and to establish a diagnosis for PPID. However, existing DST protocols have been recognized to perform poorly in previous experimental studies, often indicating presence of PPID in healthy horses. This study uses a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to analyse the oscillatory cortisol response and its interaction with dexamethasone. Two existing DST protocols were then scrutinized using model simulations with particular focus on their ability to avoid false positive outcomes. Using a Bayesian population approach allowed for quantification of uncertainty and enabled predictions for a broader population of horses than the underlying sample. Dose selection and sampling time point were both determined to have large influence on the number of false positives. Advice on pitfalls in test protocols and directions for possible improvement of DST protocols were given. The presented methodology is also easily extended to other clinical test protocols.


Asunto(s)
Dexametasona/farmacología , Hidrocortisona/metabolismo , Animales , Teorema de Bayes , Ritmo Circadiano/efectos de los fármacos , Glucocorticoides/farmacología , Caballos , Enfermedades de la Hipófisis/tratamiento farmacológico , Enfermedades de la Hipófisis/metabolismo
5.
Mol Pharm ; 14(12): 4362-4373, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099189

RESUMEN

Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.


Asunto(s)
Diaminas/farmacología , Lipidosis/inducido químicamente , Modelos Biológicos , Animales , Encéfalo/metabolismo , Química Farmacéutica , Líquido Extracelular/metabolismo , Femenino , Células Hep G2 , Humanos , Pulmón/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Modelos Animales , Modelos Químicos , Fosfolípidos/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Distribución Tisular
6.
Nat Commun ; 8: 15071, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28462939

RESUMEN

Most of the known approved drugs comprise functionalized heterocyclic compounds as subunits. Among them, non-fluorescent quinazolines with four different substitution patterns are found in a variety of clinically used pharmaceuticals, while 4,5,7,8-substituted quinazolines and those displaying their own specific fluorescence, favourable for cellular uptake visualization, have not been described so far. Here we report the development of a one-pot synthetic strategy to access these 4,5,7,8-substituted quinazolines, which are fluorescent and feature strong antiviral properties (EC50 down to 0.6±0.1 µM) against human cytomegalovirus (HCMV). Merging multistep domino processes in one-pot under fully metal-free conditions leads to sustainable, maximum efficient and high-yielding organic synthesis. Furthermore, generation of artesunic acid-quinazoline hybrids and their application against HCMV (EC50 down to 0.1±0.0 µM) is demonstrated. Fluorescence of new antiviral hybrids and quinazolines has potential applications in molecular imaging in drug development and mechanistic studies, avoiding requirement of linkage to external fluorescent markers.

7.
Molecules ; 20(9): 16103-26, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26404222

RESUMEN

Over the last several years there has been a huge increase in the development and applications of new efficient organocatalysts for enantioselective pericyclic reactions, which represent one of the most powerful types of organic transformations. Among these processes are cycloaddition reactions (e.g., [3+2]; formal [3+3]; [4+2]; vinylogous [4+2] and 1,3-dipolar cycloadditions), which belong to the most utilized reactions in organic synthesis of complex nitrogen- and oxygen-containing heterocyclic molecules. This review presents the breakthrough realized in this field using chiral BINOL-derived phosphoric acids and N-triflyl phosphoramide organocatalysts.


Asunto(s)
Fosforamidas/química , Ácidos Fosfóricos/química , Catálisis , Ciclización , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA