RESUMEN
A library of more than 2500 plant extracts was screened for activity on oncogenic signaling in melanoma cells. The ethyl acetate extract from the aerial parts of Artemisia argyi displayed pronounced inhibition of the PI3K/AKT pathway. Active compounds were tracked with the aid of HPLC-based activity profiling, and altogether 21 active compounds were isolated, including one novel dimerosequiterpenoid (1), one new disesquiterpenoid (2), three new guaianolides (3-5), 12 known sesquiterpenoids (6-17), and four known flavonoids (19-22). A new eudesmanolide derivative (13b) was isolated as an artifact formed by methanolysis. Compound 1 is the first adduct comprising a sesquiterpene lactone and a methyl jasmonate moiety. The absolute configurations of compounds 1 and 3-18 were established by comparison of their experimental and calculated ECD spectra. The absolute configuration for 2 was determined by X-ray diffraction analysis. Guaianolide 8 was the most potent sesquiterpene lactone, inhibiting the PI3K/AKT pathway with an IC50 value of 8.9 ± 0.9 µM.
Asunto(s)
Antineoplásicos , Artemisia , Lactonas , Melanoma , Fosfatidilinositol 3-Quinasas , Fitoquímicos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt , Sesquiterpenos , Artemisia/química , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Melanoma/enzimología , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacologíaRESUMEN
The PI3K/AKT and MAPK/ERK pathways are frequently mutated in metastatic melanoma. In a screen of over 2500 plant extracts, the dichloromethane extract of Ericameria nauseosa significantly inhibited oncogenic activity of AKT in MM121224 human melanoma cells. This extract was analyzed by analytical HPLC, and the column effluent was fractionated and tested for activity to generate the so-called HPLC-based activity profile. Compounds eluting within active time-windows of the chromatogram were subsequently isolated in a larger scale to afford 11 flavones (1-11), four flavanones (12-15), two diterpenes (16, 17), and a seco-caryophyllene (18). All isolated compounds were tested for activity, whereby only flavonoids were found active. Of these, flavones were shown to be more active than the flavanones. The most potent flavone was compound 9, that was displaying an IC50 of 14.7 ± 1.4 µM on AKT activity in MM121224 cells. The terpenoids (16-18) were found to be inactive in the assay. Both diterpenes, a grindelic acid derivative (16) and an ent-neo-clerodane (17) were identified as new natural products. Their absolute configuration was established by ECD. Compound 17 is the first description of a clerodane type diterpene in the genus Ericameria.
Asunto(s)
Asteraceae , Diterpenos de Tipo Clerodano , Flavanonas , Flavonas , Melanoma , Humanos , Flavonoides/farmacología , Diterpenos de Tipo Clerodano/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Flavonas/farmacología , Extractos Vegetales/farmacologíaRESUMEN
The discovery of bioactive natural products remains a time-consuming and challenging task. The ability to link high-confidence metabolite annotations in crude extracts with activity would be highly beneficial to the drug discovery process. To address this challenge, HPLC-based activity profiling and advanced UHPLC-HRMS/MS metabolite profiling for annotation were combined to leverage the information obtained from both approaches on a crude extract scaled down to the submilligram level. This strategy was applied to a subset of an extract library screening aiming to identify natural products inhibiting oncogenic signaling in melanoma. Advanced annotation and data organization enabled the identification of compounds that were likely responsible for the activity in the extracts. These compounds belonged to two different natural product scaffolds, namely, brevipolides from a Hyptis brevipes extract and methoxylated flavonoids identified in three different extracts of Hyptis and Artemisia spp. Targeted isolation of these prioritized compounds led to five brevipolides and seven methoxylated flavonoids. Brevipolide A (1) and 6-methoxytricin (9) were the most potent compounds from each chemical class and displayed AKT activity inhibition with an IC50 of 17.6 ± 1.6 and 4.9 ± 0.2 µM, respectively.
Asunto(s)
Productos Biológicos , Hyptis , Melanoma , Productos Biológicos/química , Productos Biológicos/farmacología , Descubrimiento de Drogas , Flavonoides/farmacología , Humanos , Hyptis/química , Melanoma/tratamiento farmacológico , Extractos Vegetales/químicaRESUMEN
The incidence of melanoma, the most fatal dermatological cancer, has dramatically increased over the last few decades. Modern targeted therapy with kinase inhibitors induces potent clinical responses, but drug resistance quickly develops. Combination therapy improves treatment outcomes. Therefore, novel inhibitors targeting aberrant proliferative signaling in melanoma via the MAPK/ERK and PI3K/AKT pathways are urgently needed. Biosensors were combined that report on ERK/AKT activity with image-based high-content screening and HPLC-based activity profiling. An in-house library of 2576 plant extracts was screened on two melanoma cell lines with different oncogenic mutations leading to pathological ERK/AKT activity. Out of 140 plant extract hits, 44 were selected for HPLC activity profiling. Active thymol derivatives and piperamides from Arnica montana and Piper nigrum were identified that inhibited pathological ERK and/or AKT activity. The pipeline used enabled an efficient identification of natural products targeting oncogenic signaling in melanoma.
Asunto(s)
Productos Biológicos , Melanoma , Apoptosis , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Enlargement of the lymphatic vascular network in tumor-draining lymph nodes (LNs) often precedes LN metastasis, likely providing a lymphovascular niche for tumor cells. We investigated morphological and molecular changes associated with the lymphatic remodeling process, using the 4T1 breast cancer and B16F10 melanoma models. Lymphatic expansion in tumor-draining LNs is mediated by sprouting and proliferation of lymphatic endothelial cells (LECs) as early as 4 days after tumor implantation. RNA sequencing revealed an altered transcriptional profile of LECs from tumor-draining compared to naive LNs with similar changes in both tumor models. Integrin αIIb is upregulated in LECs of tumor-draining LNs and mediates LEC adhesion to fibrinogen in vitro. LEC-associated fibrinogen was also detected in LNs in vivo, suggesting a role of integrin αIIb in lymphatic remodeling. Together, our results identify specific responses of LN LECs to tumor stimuli and provide insights into the mechanisms of lymphovascular niche formation in tumor-draining LNs.