Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1393906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911853

RESUMEN

Infections are common in plasma cell cancer multiple myeloma (MM) due to disease-related immune deficiencies and cancer treatment. Myeloma cells express Toll-like receptors (TLRs), and TLR activation has been shown to induce proliferative and pro-survival signals in cancer cells. MM is a complex and heterogeneous disease, and expression levels of TLRs as well as downstream signaling components are likely to differ between patients. Here, we show that in a large cohort of patients, TLR1, TLR4, TLR6, TLR9, and TLR10 are the most highly expressed in primary CD138+ cells. Using an MM cell line expressing TLR4 and TLR9 as a model, we demonstrate that TLR4 and TLR9 activation promoted the expression of well-established pro-survival and oncogenes in MM such as MYC, IRF4, NFKB, and BCL2. TLR4 and TLR9 activation inhibited the efficacy of proteasome inhibitors bortezomib and carfilzomib, drugs used in the treatment of MM. Inhibiting the autophagosome-lysosome protein degradation pathway by hydroxychloroquine (HCQ) diminished the protective effect of TLR activation on proteasome inhibitor-induced cytotoxicity. We also found that TLR signaling downregulated the expression of TNFRSF17, the gene encoding for B-cell maturation antigen (BCMA). MYC, BCL2, and BCL2L1 were upregulated in approximately 50% of primary cells, while the response to TLR signaling in terms of TNFRSF17 expression was dichotomous, as an equal fraction of patients showed upregulation and downregulation of the gene. While proteasome inhibitors are part of first-line MM treatment, several of the new anti-MM immune therapeutic drugs target BCMA. Thus, TLR activation may render MM cells less responsive to commonly used anti-myeloma drugs.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Receptores Toll-Like , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Antígeno de Maduración de Linfocitos B/genética , Antígeno de Maduración de Linfocitos B/metabolismo , Antígeno de Maduración de Linfocitos B/inmunología , Línea Celular Tumoral , Receptores Toll-Like/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Masculino
2.
Sci Rep ; 14(1): 3643, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351079

RESUMEN

Obesity is associated with an increased risk of developing multiple myeloma (MM). The molecular mechanisms causing this association is complex and incompletely understood. Whether obesity affects bone marrow immune cell composition in multiple myeloma is not characterized. Here, we examined the effect of diet-induced obesity on bone marrow immune cell composition and tumor growth in a Vk*MYC (Vk12653) transplant model of multiple myeloma. We find that diet-induced obesity promoted tumor growth in the bone marrow and spleen and reduced the relative number of T and B cells in the bone marrow. Our results suggest that obesity may reduce MM immune surveillance and thus may contribute to increased risk of developing MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Médula Ósea/patología , Linfocitos B/patología , Procesos Neoplásicos , Obesidad/patología , Dieta , Células de la Médula Ósea/patología
3.
Sci Rep ; 13(1): 6639, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095146

RESUMEN

Endoglin (ENG) is a single-pass transmembrane protein highly expressed on vascular endothelial cells, although low expression levels can be detected in many other cell types. Its extracellular domain can be found in circulation known as soluble endoglin (sENG). Levels of sENG are elevated in many pathological conditions, in particular preeclampsia. We have shown that while loss of cell surface ENG decreases BMP9 signaling in endothelial cells, knocking down ENG in blood cancer cells enhances BMP9 signaling. Despite sENG binding to BMP9 with high affinity and blocking the type II receptor binding site on BMP9, sENG did not inhibit BMP9 signaling in vascular endothelial cells, but the dimeric form of sENG inhibited BMP9 signaling in blood cancer cells. Here we report that in non-endothelial cells such as human multiple myeloma cell lines and the mouse myoblast cell line C2C12, both monomeric and dimeric forms of sENG inhibit BMP9 signaling when present at high concentrations. Such inhibition can be alleviated by the overexpression of ENG and ACVRL1 (encoding ALK1) in the non-endothelial cells. Our findings suggest that the effects of sENG on BMP9 signaling is cell-type specific. This is an important consideration when developing therapies targeting the ENG and ALK1 pathway.


Asunto(s)
Células Endoteliales , Receptores de Factores de Crecimiento , Ratones , Embarazo , Animales , Femenino , Humanos , Endoglina/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Fosforilación , Unión Proteica , Células Endoteliales/metabolismo , Receptores de Activinas Tipo II/metabolismo
4.
Cell Commun Signal ; 21(1): 25, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717825

RESUMEN

BACKGROUND: The immunophilin FKBP12 binds to TGF-ß family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. METHODS: Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. RESULTS: FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. CONCLUSIONS: In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load. Video Abstract.


Asunto(s)
Receptores de Activinas Tipo I , Mieloma Múltiple , Proteína 1A de Unión a Tacrolimus , Humanos , Proteínas Morfogenéticas Óseas/metabolismo , ARN Interferente Pequeño , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Receptores de Activinas Tipo I/metabolismo
5.
Oncotarget ; 12(21): 2158-2168, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676048

RESUMEN

Multiple myeloma (MM) is an incurable cancer caused by malignant transformation of plasma cells. Transforming growth factor-ß activated kinase 1 (MAP3K7, TAK1) is a major regulator of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. Both NF-κB and MAPK control expression of genes with vital roles for drug resistance in MM. TAK1 is an attractive drug target as it switches these survival pathways to cell death. Our analysis showed that patients with high MAP3K7 expression in the tumor had shorter overall and progression free survival. The TAK1-inhibitors NG25 and 5Z-7-oxozeaenol (5Z-7) were cytotoxic to MM cell lines and patient cells. NG25 reduced expression of MYC and E2F controlled genes, involved in tumor cell growth, cell cycle progression and drug resilience. TAK1 can be activated by genotoxic stress. NG25 and 5Z-7 induced both synergistic and additive cytotoxicity in combination with the alkylating agent melphalan. Melphalan activated TAK1, NF-κB, and the MAPKs p38 and c-Jun N-terminal kinase (JNK), as well as a transcriptional UV-response. This was blocked by NG25, and instead apoptosis was activated. MM induce elevated bone-degradation resulting in myeloma bone disease (MBD), which is the main cause of disability and morbidity in MM patients. NG25 and 5Z-7 reduced differentiation and viability of human bone degrading osteoclasts, suggesting that TAK1-inhibition can have a double beneficial effect for patients. In sum, TAK1 is a promising drug target for MM treatment.

6.
Biomolecules ; 10(4)2020 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-32235336

RESUMEN

Activins belong to the transforming growth factor (TGF)-ß family of multifunctional cytokines and signal via the activin receptors ALK4 or ALK7 to activate the SMAD2/3 pathway. In some cases, activins also signal via the bone morphogenetic protein (BMP) receptor ALK2, causing activation of the SMAD1/5/8 pathway. In this study, we aimed to dissect how activin A and activin B homodimers, and activin AB and AC heterodimers activate the two main SMAD branches. We compared the activin-induced signaling dynamics of ALK4/7-SMAD2/3 and ALK2-SMAD1/5 in a multiple myeloma cell line. Signaling via the ALK2-SMAD1/5 pathway exhibited greater differences between ligands than signaling via ALK4/ALK7-SMAD2/3. Interestingly, activin B and activin AB very potently activated SMAD1/5, resembling the activation commonly seen with BMPs. As SMAD1/5 was also activated by activins in other cell types, we propose that dual specificity is a general mechanism for activin ligands. In addition, we found that the antagonist follistatin inhibited signaling by all the tested activins, whereas the antagonist cerberus specifically inhibited activin B. Taken together, we propose that activins may be considered dual specificity TGF-ß family members, critically affecting how activins may be considered and targeted clinically.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Activinas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Activinas/química , Línea Celular Tumoral , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
7.
JBMR Plus ; 4(1): e10247, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956851

RESUMEN

Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre- and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4-treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human-mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2-/- γC-/-mice. Mice were treated with adeno-associated virus serotype 8 BMP4 vectors (AAV8-BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8-BMP4 mice compared with the AAV8-CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4-treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non-myeloma femurs by µCT. Surprisingly, the AAV8-BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8-CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

8.
J Cell Sci ; 131(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29739878

RESUMEN

TGF-ß/BMP superfamily ligands require heteromeric complexes of type 1 and 2 receptors for ligand-dependent downstream signaling. Activin A, a TGF-ß superfamily member, inhibits growth of multiple myeloma cells, but the mechanism for this is unknown. We therefore aimed to clarify how activins affect myeloma cell survival. Activin A activates the transcription factors SMAD2/3 through the ALK4 type 1 receptor, but may also activate SMAD1/5/8 through mutated variants of the type 1 receptor ALK2 (also known as ACVR1). We demonstrate that activin A and B activate SMAD1/5/8 in myeloma cells through endogenous wild-type ALK2. Knockdown of the type 2 receptor BMPR2 strongly potentiated activin A- and activin B-induced activation of SMAD1/5/8 and subsequent cell death. Furthermore, activity of BMP6, BMP7 or BMP9, which may also signal via ALK2, was potentiated by knockdown of BMPR2. Similar results were seen in HepG2 liver carcinoma cells. We propose that BMPR2 inhibits ALK2-mediated signaling by preventing ALK2 from oligomerizing with the type 2 receptors ACVR2A and ACVR2B, which are necessary for activation of ALK2 by activins and several BMPs. In conclusion, BMPR2 could be explored as a possible target for therapy in patients with multiple myeloma.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Activinas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Activinas/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Humanos , Transducción de Señal
9.
Immun Inflamm Dis ; 4(3): 327-37, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27621815

RESUMEN

INTRODUCTION: Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). METHODS: Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. RESULTS: We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFß whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1ß, IL-6, CXCL10, and in the inhibition of HGF and TGFß. CONCLUSION: Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

10.
Cell Commun Signal ; 13: 27, 2015 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-26047946

RESUMEN

BACKGROUND: Activins are members of the TGF-ß family of ligands that have multiple biological functions in embryonic stem cells as well as in differentiated tissue. Serum levels of activin A were found to be elevated in pathological conditions such as cachexia, osteoporosis and cancer. Signaling by activin A through canonical ALK4-ACVR2 receptor complexes activates the transcription factors SMAD2 and SMAD3. Activin A has a strong affinity to type 2 receptors, a feature that they share with some of the bone morphogenetic proteins (BMPs). Activin A is also elevated in myeloma patients with advanced disease and is involved in myeloma bone disease. RESULTS: In this study we investigated effects of activin A binding to receptors that are shared with BMPs using myeloma cell lines with well-characterized BMP-receptor expression and responses. Activin A antagonized BMP-6 and BMP-9, but not BMP-2 and BMP-4. Activin A was able to counteract BMPs that signal through the type 2 receptors ACVR2A and ACVR2B in combination with ALK2, but not BMPs that signal through BMPR2 in combination with ALK3 and ALK6. CONCLUSIONS: We propose that one important way that activin A regulates cell behavior is by antagonizing BMP-ACVR2A/ACVR2B/ALK2 signaling.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Mieloma Múltiple/metabolismo , Transducción de Señal , Receptores de Activinas Tipo I/metabolismo , Línea Celular Tumoral , Folistatina/metabolismo , Humanos , Mapas de Interacción de Proteínas
11.
Eur J Haematol ; 91(4): 339-46, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23869695

RESUMEN

OBJECTIVES: The use of new drugs has improved the treatment of multiple myeloma and diffuse large B-cell lymphoma (DLBCL). Nevertheless, over time many patients relapse and develop resistance to treatment, and efforts are needed to overcome drug resistance. The widely used malaria drug artesunate has been reported to have antitumor activity, and we aimed to test the effects of artesunate on a panel of myeloma and lymphoma cells. METHODS: Myeloma and DLBCL cell lines were treated with artesunate in vitro. The effects of artesunate treatment were evaluated using ATP content measurements for proliferation and annexin V/propidium iodide labeling for apoptosis. Western blotting was used to look for artesunate-induced protein changes. In addition, we measured artesunate effects on patient myeloma cells in the presence of bone marrow stromal cells. RESULTS: Artesunate treatment efficiently inhibited cell growth and induced apoptosis in cell lines. Apoptosis was induced concomitantly with downregulation of MYC and anti-apoptotic Bcl-2 family proteins, as well as with cleavage of caspase-3. The IC50 values of artesunate in cell lines varied between 0.3 and 16.6 µm. Furthermore, some primary myeloma cells were also sensitive to artesunate at doses around 10 µm. Concentrations of this order are pharmacologically relevant as they can be obtained in plasma after intravenous administration of artesunate for malaria treatment. CONCLUSION: Our findings indicate that artesunate is a potential drug for treatment of multiple myeloma and DLBCL at doses of the same order as currently in use for treatment of malaria without serious adverse effects.


Asunto(s)
Antimaláricos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Artemisininas/farmacología , Ciclo Celular/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/biosíntesis , Anexina A5/genética , Anexina A5/metabolismo , Artesunato , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Linfoma de Células B Grandes Difuso/patología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Mieloma Múltiple/patología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
12.
Blood ; 120(12): 2450-3, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22806891

RESUMEN

In multiple myeloma, c-MYC is activated and contributes to the malignant phenotype. Targeting MYC by short hairpin RNA induced cell death in myeloma cell lines; however, cell lines are generated from samples taken in advanced stages of the disease and may not reflect patient cells adequately. In this study, we used the selective small molecule inhibitor of MYC-MAX heterodimerization, 10058-F4, on myeloma cell lines as well as primary myeloma cells, and we show that inhibition of c-MYC activity efficiently induces myeloma cell death. Moreover, in cocultures of cell lines with bone marrow stromal cells from myeloma patients, the inhibitor still induces apoptosis. Our results provide further evidence that myeloma cells are addicted to c-MYC activity and that c-MYC is a promising therapeutic target in multiple myeloma.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Mieloma Múltiple/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Tiazoles/farmacología
13.
J Immunol ; 185(6): 3131-9, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20702733

RESUMEN

The TLR9 agonist CpG-oligodeoxynucleotide (CpG-ODN) with a phosphorothioate backbone (PTO-CpG-ODN) is evaluated in clinical trials as a vaccine adjuvant or as treatment of cancers. Bone morphogenetic proteins (BMPs) regulate growth and differentiation of several cell types, and also induce apoptosis of cancer cells. Cross-talk between BMP- and TLR-signaling has been reported, and we aimed to investigate whether CpG-ODN influenced BMP-induced osteoblast differentiation or BMP-induced apoptosis of malignant plasma cells. We found that PTO-CpG-ODN inhibited BMP-2-induced osteoblast differentiation from human mesenchymal stem cells. Further, PTO-CpG-ODN counteracted BMP-2- and BMP-6-induced apoptosis of the human myeloma cell lines IH-1 and INA-6, respectively. In contrast, PTO-CpG-ODN did not antagonize the antiproliferative effect of BMP-2 on hMSCs or IH-1 cells. Inhibition of Smad-signaling and p38 MAPK-signaling indicated that apoptosis of IH-1 cells is dependent on Smad-signaling downstream of BMP, whereas the antiproliferative effect of BMP-2 on IH-1 cells also involves p38 MAPK-signaling. Together, the data suggested a specific inhibition by PTO-CpG-ODN on BMP-Smad-signaling. Supporting this we found that PTO-CpG-ODN inhibited BMP-induced phosphorylation of receptor-Smads in human mesenchymal stem cells and myeloma cell lines. This effect appeared to be independent of TLR9 because GpC-ODN and other ODNs with the ability to form multimeric structures inhibited Smad-signaling as efficiently as PTO-CpG-ODNs, and because knockdown of TLR9 by small interfering RNA in INA-6 cells did not blunt the effect of PTO-CpG-ODN. In conclusion, our results demonstrate that PTO-CpG-ODN inhibits BMP-signaling, and thus might provoke unwanted TLR9-independent side effects in patients.


Asunto(s)
Apoptosis/inmunología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Mieloma Múltiple/patología , Oligodesoxirribonucleótidos/farmacología , Osteoblastos/citología , Oligonucleótidos Fosforotioatos/farmacología , Transducción de Señal/inmunología , Proteínas Smad/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Morfogenéticas Óseas/fisiología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Inhibidores de Crecimiento/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Mieloma Múltiple/inmunología , Osteoblastos/efectos de los fármacos , Osteoblastos/inmunología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/inmunología , ARN Interferente Pequeño/farmacología , Transducción de Señal/genética , Proteínas Smad/metabolismo , Proteínas Smad/fisiología , Receptor Toll-Like 9/antagonistas & inhibidores , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/fisiología
14.
Eur J Haematol ; 82(5): 354-63, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19191868

RESUMEN

BACKGROUND: BCL3 is a putative oncogene encoding for a protein belonging to the inhibitory kappaB-family. We experienced that this putative oncogene was a common target gene for growth-promoting cytokines in myeloma cell lines. METHODS: Gene expression of BCL3 was studied in 351 newly diagnosed myeloma patients, 12 patients with smouldering myeloma, 44 patients with monoclonal gammopathy of undetermined significance and 22 healthy individuals. Smaller material of samples was included for mRNA detection by RT-PCR, protein detection by Western blot and immunohistochemistry, and for cytogenetic studies. A total of eight different myeloma cell lines were studied. RESULTS: Bcl-3 was induced in myeloma cell lines by interleukin (IL)-6, IL-21, IL-15, tumor necrosis factor-alpha and IGF-1, and its upregulation was associated with increased proliferation of the cells. In a population of 351 patients, expression levels of BCL3 above 75th percentile were associated with shorter 5-yr survival. When this patient population was divided into subgroups based on molecular classification, BCL3 was significantly increased in a poor risk subgroup characterized by overexpression of cell cycle and proliferation related genes. Intracellular localization of Bcl-3 was dependent on type of stimulus given to the cell. CONCLUSION: BCL3 is a common target gene for several growth-promoting cytokines in myeloma cells and high expression of BCL3 at the time of diagnosis is associated with poor prognosis of patients with multiple myeloma (MM). These data may indicate a potential oncogenic role for Bcl-3 in MM.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Proteínas del Linfoma 3 de Células B , Estudios de Casos y Controles , Ciclo Celular/genética , Citocinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mieloma Múltiple/patología , Pronóstico , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/análisis , Tasa de Supervivencia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...