Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721682

RESUMEN

Migration is critical for life-cycle completion in diadromous fish species. River connectivity is vital in facilitating these large-scale movement events, but the extent of present-day river fragmentation can interfere with these migrations. Fish passage solutions (FPSs) are commonly implemented with the aim of improving river connectivity. In our study, we investigated the performance of two types of FPSs, spill regimes and complete dam removal, on Atlantic salmon (Salmo salar) smolt migrations. We used acoustic telemetry to monitor migration behavior and passage success of 120 wild smolts released in three different groups/sites: one group with two dams to pass to reach the river mouth, a second group with one dam to pass, and a control group without any barriers to pass (upstream of a recently removed hydroelectric dam). Smolt passage probabilities were similar for the two studied dams (87% and 86%) but showed variation in path choice, delay times, and loss rates. Passage success was influenced by several factors, such as body size, diel period, and water temperature, but not flow. Cumulative passage success to the river mouth was 61%, with most individuals being lost within lentic river stretches, either in the forebays of hydroelectric power stations or in naturally wide river stretches. Within the recently rehabilitated river sections (post dam removal), passage speeds were significantly faster than all other sections of the river (post-rehabilitation x¯ = 56.1 km/day) with significantly faster speeds compared to pre-rehabilitation (pre-x¯ = 28.0 km/day). Our findings provide valuable information on the benefits of dam removal and highlight the need for further rehabilitation measures in upriver reaches where barriers still affect downstream passage.

2.
Mov Ecol ; 11(1): 68, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880741

RESUMEN

Animal movement is a multifaceted process that occurs for multiple reasons with powerful consequences for food web and ecosystem dynamics. New paradigms and technical innovations have recently pervaded the field, providing increasingly powerful means to deliver fine-scale movement data, attracting renewed interest. Specifically in the aquatic environment, tracking with acoustic telemetry now provides integral spatiotemporal information to follow individual movements in the wild. Yet, this technology also holds great promise for experimental studies, enhancing our ability to truly establish cause-and-effect relationships. Here, we argue that ponds with well-defined borders (i.e. "islands in a sea of land") are particularly well suited for this purpose. To support our argument, we also discuss recent experiences from studies conducted in an innovative experimental infrastructure, composed of replicated ponds equipped with modern aquatic telemetry systems that allow for unparalleled insights into the movement patterns of individual animals.

3.
Mov Ecol ; 11(1): 57, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37710345

RESUMEN

Fisheries managers stock triploid (i.e., infertile, artificially produced) rainbow trout Oncorhynchus mykiss in North American lakes to support sport fisheries while minimizing the risk of genetic introgression between hatchery and wild trout. In Washington State, the Washington Department of Fish and Wildlife (WDFW) allocates approximately US $3 million annually to stock hatchery-origin rainbow trout in > 600 lakes, yet only about 10% of them are triploids. Many lakes in Washington State drain into waters that support wild anadromous steelhead O. mykiss that are listed as threatened under the U.S. Endangered Species Act. As a result, there is a strong interest in understanding the costs and benefits associated with stocking sterile, triploid rainbow trout as an alternative to traditional diploids. The objectives of this study were to compare triploid and diploid rainbow trout in terms of: (1) contribution to the sport fishery catch, (2) fine-scale movements within the study lakes, (3) rate of emigration from the lake, and (4) natural mortality. Our results demonstrated that triploid and diploid trout had similar day-night distribution patterns, but triploid trout exhibited a lower emigration rate from the lake and lower catch rates in some lakes. Overall, triploid rainbow trout represent a viable alternative to stocking of diploids, especially in lakes draining to rivers, because they are sterile, have comparable home ranges, and less often migrate.

4.
Curr Biol ; 32(16): R863-R865, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998590

RESUMEN

Gustv Hellström and colleagues introduce acoustic telemetry used to track movements and behaviors of aquatic animals.


Asunto(s)
Acústica , Telemetría , Animales , Movimiento
5.
Biol Rev Camb Philos Soc ; 97(4): 1346-1364, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35233915

RESUMEN

Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.


Asunto(s)
Animales Salvajes , Ecotoxicología , Animales , Conducta Animal , Evolución Biológica , Ambiente
6.
Science ; 375(6582): eabg1780, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175823

RESUMEN

Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.


Asunto(s)
Animales Salvajes/fisiología , Conducta Animal , Macrodatos , Ecología , Ambiente , Movimiento , Migración Animal , Animales , Recolección de Datos , Ecosistema , Análisis Espacio-Temporal
8.
Mov Ecol ; 9(1): 40, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321114

RESUMEN

Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.

9.
Environ Sci Technol ; 55(6): 3624-3633, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33663207

RESUMEN

A current theory in environmental science states that dissolved anxiolytics (oxazepam) from wastewater effluents can reduce anti-predator behavior in fish with potentially negative impacts on prey fish populations. Here, we hypothesize that European perch (Perca fluviatilis) populations being exposed to oxazepam in situ show reduced anti-predator behavior, which has previously been observed for exposed isolated fish in laboratory studies. We tested our hypothesis by exposing a whole-lake ecosystem, containing both perch (prey) and northern pike (Esox lucius; predator), to oxazepam while tracking fish behavior before and after exposure in the exposed lake as well as in an unexposed nearby lake (control). Oxazepam concentrations in the exposed lake ranged between 11 and 24 µg L-1, which is >200 times higher than concentrations reported for European rivers. In contrast to our hypothesis, we did not observe an oxazepam-induced reduction in anti-predator behavior, inferred from perch swimming activity, distance to predators, distance to conspecifics, home-range size, and habitat use. In fact, exposure to oxazepam instead stimulated anti-predator behavior (decreased activity, decreased distance to conspecifics, and increased littoral habitat use) when using behavior in the control lake as a reference. Shoal dynamics and temperature changes may have masked modest reductions in anti-predator behavior due to oxazepam. Although we cannot fully resolve the mechanism(s) behind our observations, our results indicate that the effects of oxazepam on perch behavior in a familiar natural ecosystem are negligible in comparison to the effects of other environmental conditions.


Asunto(s)
Percas , Animales , Ecosistema , Esocidae , Lagos , Oxazepam
10.
Sci Total Environ ; 687: 488-493, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31212157

RESUMEN

Hatchery-reared salmon smolt used for supplementary stocking often display poor migration behavior compared to wild smolt, which reduces the success of this management action. Oxazepam, an anxiolytic drug, has been shown to intensify salmon smolt migration in mesocosm experiments, and treatment with this drug has, therefore, been suggested as a management option to improve downstream smolt migration. In this study, we tested this by assessing migration performance of hatchery-reared Atlantic salmon (Salmo salar) smolt along a 21-km long natural river-to-sea migration route in a boreal river in Northern Sweden. Using acoustic telemetry, the migration rate and survival of smolt that had been exposed to oxazepam (200 µg L-1, N = 20) was monitored and compared with a control group (N = 20) of unexposed smolt. Exposed smolt took significantly longer time to initiate migration after release compared to the control fish, but after that we observed no significant difference in downstream migration speed. However, exposed smolt had considerably higher probability of being predated on compared to control smolt. We attribute these results to increased risk-taking and higher activity in oxazepam-exposed smolt, which in turn increased initial non-directional exploratory behavior and decreased predator vigilance. These results are discussed based on current concerns for ecological implications of behavioral modifications induced by pharmaceutical pollution and climate change. We conclude that exposure to oxazepam is an unsuitable management option to prime migration of reared salmon in natural systems.


Asunto(s)
Migración Animal , Conducta Animal , Salmo salar/fisiología , Animales , Ansiedad
11.
Aquat Toxicol ; 207: 170-178, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30576864

RESUMEN

Pharmaceuticals entering aquatic ecosystems via wastewater effluents are of increasing concern for wild animals. Because some pharmaceuticals are designed to modulate human behaviour, measuring the impacts of exposure to pharmaceuticals on fish behaviour has become a valuable endpoint. While laboratory studies have shown that pharmaceuticals can affect fish behaviour, there is a lack of understanding if behaviour is similarly affected in natural environments. Here, we exposed sea trout (Salmo trutta) smolts to two concentrations of two pharmaceutical pollutants often detected in surface waters: temazepam (a benzodiazepine, anxiolytic) or irbesartan (an angiotensin II receptor blocker, anti-hypertensive). We tested the hypothesis that changes to behavioural traits (anxiety and activity) measured in laboratory trials following exposure are predictive of behaviour in the natural environment (downstream migration). Measures of anxiety and activity in the laboratory assay did not vary with temazepam treatment, but temazepam-exposed fish began migrating faster in the field. Activity in the laboratory assay did predict overall migration speed in the field. In contrast to temazepam, we found that irbesartan exposure did not affect behaviour in the laboratory, field, or the relationship between the two endpoints. However, irbesartan was also not readily taken up into fish tissue (i.e. below detection levels in the muscle tissue), while temazepam bioconcentrated (bioconcentration factor 7.68) rapidly (t1/2 < 24 h). Our findings add to a growing literature showing that benzodiazepine pollutants can modulate fish behaviour and that laboratory assays may be less sensitive at detecting the effects of pollutants compared to measuring effects in natural settings. Therefore, we underscore the importance of measuring behavioural effects in the natural environment.


Asunto(s)
Conducta Animal/efectos de los fármacos , Ecosistema , Laboratorios , Trucha/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Movimiento , Músculos/efectos de los fármacos , Músculos/metabolismo , Análisis de Componente Principal , Temazepam/toxicidad
12.
J Toxicol Environ Health A ; 80(16-18): 963-970, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829722

RESUMEN

Environmental pollution by pharmaceuticals is increasingly recognized as a major threat to aquatic ecosystems worldwide. A complex mix of pharmaceuticals enters waterways via treated wastewater effluent and many remain biochemically active after the drugs reach aquatic systems. However, to date little is known regarding the ecological effects that might arise following pharmaceutical contamination of aquatic environments. One group of particular concern is behaviorally modifying pharmaceuticals as seemingly minor changes in behavior may initiate marked ecological consequences. The aim of this study was to examine the influence of a benzodiazepine anxiolytic drug (oxazepam) on key behavioral traits in wild roach (Rutilus rutilus) at concentrations similar to those encountered in effluent surface waters. Roach exposed to water with high concentrations of oxazepam (280 µg/L) exhibited increased boldness, while roach at low treatment (0.84 µg/L) became bolder and more active compared to control fish. Our results reinforce the notion that anxiolytic drugs may be affecting fish behavior in natural systems, emphasizing the need for further research on ecological impacts of pharmaceuticals in aquatic systems and development of new tools to incorporate ecologically relevant behavioral endpoints into ecotoxicological risk assessment.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cyprinidae/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Oxazepam/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Ansiolíticos/toxicidad , Determinación de Punto Final , Aguas Residuales/química
13.
Curr Zool ; 63(2): 159-164, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29491973

RESUMEN

Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels.

14.
Nat Commun ; 7: 13460, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27922016

RESUMEN

Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.


Asunto(s)
Migración Animal/efectos de los fármacos , Ansiolíticos/farmacología , Salmo salar/fisiología , Agua/química , Ácido gamma-Aminobutírico/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Oxazepam/farmacología , Factores de Tiempo
15.
Behav Processes ; 133: 6-11, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27771395

RESUMEN

Many fish spend a large part of their life in groups. The size of the group influences potential costs and benefits of group living, and depending on context a fish may prefer different group sizes. Group-size preference may also depend on personality, with social individuals expected to prefer larger groups than asocial fish. This study investigates context-dependent group size preference in two populations of a highly social fish, young of the year Eurasian perch. The perch were given a choice between a group of two and a group of eight conspecifics under three different situations: the small group was feeding, the small group had access to shelter, and a control treatment with no extra stimuli. In general, the perch associated more with the large group, but significantly less so during the food treatment. Perceived access to shelter did not affect group size preference compared to the control treatment. Consistent individual differences in social attraction were found within each context, but not among all contexts. Also, an individual's sociability did not correlate with its degree of boldness, indicating a lack of a behavioural syndrome between the two personality traits in the studied populations. The results highlight the importance of considering environmental context when studying social behaviour in obligate social fish, and show the complexity of the concept of sociability as a personality trait by demonstrating context dependence in individual consistency in social behaviour.


Asunto(s)
Conducta Animal/fisiología , Percas/fisiología , Conducta Social , Animales
16.
Aquat Toxicol ; 170: 384-389, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26683267

RESUMEN

Laboratory-based behavioural assays are often used in ecotoxicological studies to assess the environmental risk of aquatic contaminants. While results from such laboratory-based risk assessments may be difficult to extrapolate to natural environments, technological advancements over the past decade now make it possible to perform risk assessments through detailed studies of exposed individuals in natural settings. Acoustic telemetry is a technology to monitor movement and behaviour of aquatic organism in oceans, lakes, and rivers. The technology allows for tracking of multiple individuals simultaneously with very high temporal and spatial resolution, with the option to incorporate sensors to measure various physiological and environmental parameters. Although frequently used in fisheries research, aquatic ecotoxicology has been slow to adopt acoustic telemetry as a tool in field-based studies. This mini-review intends to introduce acoustic telemetry to aquatic ecotoxicologists, focusing on the potential of the technology to bridge the gap between laboratory assays and natural behaviours when making toxicological risk assessments.


Asunto(s)
Organismos Acuáticos/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Telemetría , Pruebas de Toxicidad
17.
Fish Physiol Biochem ; 39(3): 471-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22976196

RESUMEN

Male goldfish (Carassius auratus) exposed to female hormonal pheromones express increased milt volumes and their sperm fertilize more eggs than sperm from unprimed males. Ovulated salmonid females also release odours that increase volumes of strippable milt in males. It is, however, not known if the priming pheromones affect the ability of sperm to fertilize eggs in salmonids. In this study, we compare the proportion of larvae produced from in vitro fertilization tests between primed brown trout (Salmo trutta) males exposed to a mix of female urine and ovarian fluids, and control males exposed only to 0.9 % sodium chloride. We also investigate priming effects on milt yield and sperm motility. Fertilization tests with sperm from single males, as well as sperm from two males (i.e., sperm competition), were performed. Primed males generated more larvae in both the single male and competition fertilization tests. No differences between treatments in milt yield and sperm motility could be established.


Asunto(s)
Acuicultura/métodos , Fertilidad/efectos de los fármacos , Fertilización/efectos de los fármacos , Atractivos Sexuales/farmacología , Espermatozoides/fisiología , Trucha/fisiología , Animales , Femenino , Fertilización In Vitro/veterinaria , Líquido Folicular/química , Larva/fisiología , Masculino , Atractivos Sexuales/análisis , Motilidad Espermática/efectos de los fármacos , Suecia , Orina/química
18.
J Anim Ecol ; 81(6): 1311-1318, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22694656

RESUMEN

1. Populations of the same species often display different behaviours, for example, in their response to predators. The question is whether this difference is developed as part of a divergent selection caused by differences in predation pressure, or as a result of phenotypic responses to current environmental conditions. 2. Two populations of Eurasian perch were investigated over a time span of 6 years to see whether risk-taking behaviour in young-of-the-year perch were consistent across cohorts, or if behaviour varied over time with changes in predation regime. 3. Boldness was estimated in aquarium studies by looking at how the fish made trade-offs between foraging in a risky area and staying in shelter. Predation risk of each year and lake was estimated from fishing surveys, using an individual-based model calculating attack rates for cannibalistic perch. 4. The average boldness scores were consistently lower in perch from Fisksjön compared with those in Ängersjön, although the magnitude of the difference varied among years. Variance component analyses showed that differences between lakes in boldness scores only explained 12 per cent of the total variation. Differences between years were contributing at least similarly or more to the total variance, and the variation was higher in Fisksjön than in Ängersjön. 5. The observed risk-taking behaviour of young-of-the-year perch, compared across cohorts, was significantly correlated with the year-specific estimates of cannibalistic attack rates, with lower boldness scores in years with higher predation pressure. In Fisksjön, with significant changes over the years in population structure, the range of both predation risk and boldness scores was wider than in Ängersjön. 6. By following the two perch populations over several years, we have been able to show that the differences in risk-taking behaviour mainly are due to direct phenotypic responses to recent experience of predation risk. Long-term differences in behaviour among perch populations thus reflect consistent differences in predation regime rather than diverging inherent traits.


Asunto(s)
Canibalismo , Conducta Alimentaria , Percas/fisiología , Animales , Ambiente , Cadena Alimentaria , Análisis de Componente Principal , Distribución Aleatoria , Estaciones del Año , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...