Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Bioinform ; 3: 1189723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325771

RESUMEN

Computational modeling has emerged as a critical tool in investigating the complex molecular processes involved in biological systems and diseases. In this study, we apply Boolean modeling to uncover the molecular mechanisms underlying Parkinson's disease (PD), one of the most prevalent neurodegenerative disorders. Our approach is based on the PD-map, a comprehensive molecular interaction diagram that captures the key mechanisms involved in the initiation and progression of PD. Using Boolean modeling, we aim to gain a deeper understanding of the disease dynamics, identify potential drug targets, and simulate the response to treatments. Our analysis demonstrates the effectiveness of this approach in uncovering the intricacies of PD. Our results confirm existing knowledge about the disease and provide valuable insights into the underlying mechanisms, ultimately suggesting potential targets for therapeutic intervention. Moreover, our approach allows us to parametrize the models based on omics data for further disease stratification. Our study highlights the value of computational modeling in advancing our understanding of complex biological systems and diseases, emphasizing the importance of continued research in this field. Furthermore, our findings have potential implications for the development of novel therapies for PD, which is a pressing public health concern. Overall, this study represents a significant step forward in the application of computational modeling to the investigation of neurodegenerative diseases, and underscores the power of interdisciplinary approaches in tackling challenging biomedical problems.

2.
Comput Struct Biotechnol J ; 20: 3161-3172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782730

RESUMEN

Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the coverage of such representation constantly increases. These static diagrams can be transformed into dynamic models, allowing for in silico simulations and predictions. Boolean modelling is an approach based on an abstract representation of the system. It emphasises the qualitative modelling of biological systems in which each biomolecule can take two possible values: zero for absent or inactive, one for present or active. Because of this approximation, Boolean modelling is applicable to large diagrams, allowing to capture their dynamic properties. We review Boolean models of disease mechanisms and compare a range of methods and tools used for analysis processes. We explain the methodology of Boolean analysis focusing on its application in disease modelling. Finally, we discuss its practical application in analysing signal transduction and gene regulatory pathways in health and disease.

3.
Process Saf Environ Prot ; 149: 399-409, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33204052

RESUMEN

COVID-19 is a new member of the Coronaviridae family that has serious effects on respiratory, gastrointestinal, and neurological systems. COVID-19 spreads quickly worldwide and affects more than 41.5 million persons (till 23 October 2020). It has a high hazard to the safety and health of people all over the world. COVID-19 has been declared as a global pandemic by the World Health Organization (WHO). Therefore, strict special policies and plans should be made to face this pandemic. Forecasting COVID-19 cases in hotspot regions is a critical issue, as it helps the policymakers to develop their future plans. In this paper, we propose a new short term forecasting model using an enhanced version of the adaptive neuro-fuzzy inference system (ANFIS). An improved marine predators algorithm (MPA), called chaotic MPA (CMPA), is applied to enhance the ANFIS and to avoid its shortcomings. More so, we compared the proposed CMPA with three artificial intelligence-based models include the original ANFIS, and two modified versions of ANFIS model using both of the original marine predators algorithm (MPA) and particle swarm optimization (PSO). The forecasting accuracy of the models was compared using different statistical assessment criteria. CMPA significantly outperformed all other investigated models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA