Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hered ; 115(1): 72-85, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38015800

RESUMEN

Characterizing the mechanisms influencing the distribution of genetic variation in aquatic species can be difficult due to the dynamic nature of hydrological landscapes. In North America's Central Highlands, a complex history of glacial dynamics, long-term isolation, and secondary contact have shaped genetic variation in aquatic species. Although the effects of glacial history have been demonstrated in many taxa, responses are often lineage- or species-specific and driven by organismal ecology. In this study, we reconstruct the evolutionary history of a freshwater mussel species complex using a suite of mitochondrial and nuclear loci to resolve taxonomic and demographic uncertainties. Our findings do not support Pleurobema rubrum as a valid species, which is proposed for listing as threatened under the U.S. Endangered Species Act. We synonymize P. rubrum under Pleurobema sintoxia-a common and widespread species found throughout the Mississippi River Basin. Further investigation of patterns of genetic variation in P. sintoxia identified a complex demographic history, including ancestral vicariance and secondary contact, within the Eastern Highlands. We hypothesize these patterns were shaped by ancestral vicariance driven by the formation of Lake Green and subsequent secondary contact after the last glacial maximum. Our inference aligns with demographic histories observed in other aquatic taxa in the region and mirrors patterns of genetic variation of a freshwater fish species (Erimystax dissimilis) confirmed to serve as a parasitic larval host for P. sintoxia. Our findings directly link species ecology to observed patterns of genetic variation and may have significant implications for future conservation and recovery actions of freshwater mussels.


Asunto(s)
Bivalvos , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Bivalvos/genética , Lagos , Demografía , Filogenia , Variación Genética
2.
ACS Med Chem Lett ; 11(10): 1913-1918, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062173

RESUMEN

The small molecule gibberellin JRA-003 was identified as an inhibitor of the NF-kB (nuclear kappa-light-chain-enhancer of activated B cells) pathway. Here we find that JRA-003 binds to and significantly inhibits the nuclear translocation of pathway-activating kinases IKKα (IκB kinase alpha) and IKKß (IκB kinase beta). Analogs of JRA-003 were synthesized and NF-κB-inhibiting gibberellins were found to be cytotoxic in cancer-derived cell lines (HS 578T, HCC 1599, RC-K8, Sud-HL4, CA 46, and NCIH 4466). Not only was JRA-003 identified as the most potent synthetic gibberellin against cancer-derived cell lines, it displayed no cytotoxicity in cells derived from noncancerous sources (HEK 293T, HS 578BST, HS 888Lu, HS 895Sk, HUVEC). This selectivity suggests a promising approach for the development of new therapeutics.

3.
Proc Natl Acad Sci U S A ; 115(36): 8960-8965, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127017

RESUMEN

Transcriptional coactivators are a molecular recognition marvel because a single domain within these proteins, the activator binding domain or ABD, interacts with multiple compositionally diverse transcriptional activators. Also remarkable is the structural diversity among ABDs, which range from conformationally dynamic helical motifs to those with a stable core such as a ß-barrel. A significant objective is to define conserved properties of ABDs that allow them to interact with disparate activator sequences. The ABD of the coactivator Med25 (activator interaction domain or AcID) is unique in that it contains secondary structural elements that are on both ends of the spectrum: helices and loops that display significant conformational mobility and a seven-stranded ß-barrel core that is structurally rigid. Using biophysical approaches, we build a mechanistic model of how AcID forms binary and ternary complexes with three distinct activators; despite its static core, Med25 forms short-lived, conformationally mobile, and structurally distinct complexes with each of the cognate partners. Further, ternary complex formation is facilitated by allosteric communication between binding surfaces on opposing faces of the ß-barrel. The model emerging suggests that the conformational shifts and cooperative binding is mediated by a flexible substructure comprised of two dynamic helices and flanking loops, indicating a conserved mechanistic model of activator engagement across ABDs. Targeting a region of this substructure with a small-molecule covalent cochaperone modulates ternary complex formation. Our data support a general strategy for the identification of allosteric small-molecule modulators of ABDs, which are key targets for mechanistic studies as well as therapeutic applications.


Asunto(s)
Complejo Mediador/antagonistas & inhibidores , Complejo Mediador/química , Péptidos/química , Regulación Alostérica/fisiología , Humanos , Complejo Mediador/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
4.
Angew Chem Int Ed Engl ; 55(48): 14997-15001, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27791341

RESUMEN

Aberrant canonical NF-κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many non-canonical NF-κB functions. Here we show that a selective peptide-based inhibitor of canonical NF-κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a non-labile bond, shows an about 10-fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NF-κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many protein-protein interactions mediated by such structures.


Asunto(s)
FN-kappa B/antagonistas & inhibidores , Péptidos/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Células HEK293 , Humanos , Simulación de Dinámica Molecular , FN-kappa B/metabolismo , Péptidos/síntesis química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...