Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 21(10): 2863-2872, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331518

RESUMEN

BACKGROUND: Despite high risk of venous thromboembolism (VTE) in patients with pancreatic cancer, there are little data on contact system activation in these patients. OBJECTIVES: To quantify contact system and intrinsic pathway activation and subsequent VTE risk in patients with pancreatic cancer. METHODS: Patients with advanced pancreatic cancer were compared with controls. Blood was drawn at baseline and patients were followed for 6 months. Complexes of proteases with their natural inhibitors, C1-esterase inhibitor (C1-INH), antithrombin (AT), or alpha-1 antitrypsin (α1at), were measured for complexes containing kallikrein (PKa:C1-INH), factor (F)XIIa (FXIIa:C1-INH), and FXIa (FXIa:C1-INH, FXIa:AT, FXIa:α1at). The association of cancer with complex levels was assessed in a linear regression model, adjusted for age, sex, and body mass index. In a competing risk regression model, we assessed associations between complex levels and VTE. RESULTS: One hundred nine patients with pancreatic cancer and 22 controls were included. The mean age was 66 years (SD, 8.4) in the cancer cohort and 52 years (SD, 10.1) in controls. In the cancer cohort, 18 (16.7%) patients developed VTE during follow-up. In the multivariable regression model, pancreatic cancer was associated with increased complexes of PKa:C1-INH (P < .001), FXIa:C1-INH (P < .001), and FXIa:AT (P < .001). High FXIa:α1at (subdistribution hazard ratio, 1.48 per log increase; 95% CI, 1.02-2.16) and FXIa:AT (subdistribution hazard ratio, 2.78 highest vs lower quartiles; 95% CI, 1.10-7.00) were associated with VTE. CONCLUSION: Complexes of proteases with their natural inhibitors were elevated in patients with cancer. These data suggest that the contact system and intrinsic pathway activation are increased in patients with pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Tromboembolia Venosa , Anciano , Femenino , Humanos , Masculino , Anticoagulantes , Antitrombina III , Endopeptidasas , Calicreínas , Estudios Prospectivos , Tromboembolia Venosa/diagnóstico , Persona de Mediana Edad
2.
Blood ; 141(15): 1871-1883, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706361

RESUMEN

A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMß2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.


Asunto(s)
Anemia de Células Falciformes , Factor XII , Animales , Ratones , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/metabolismo , Factor XII/metabolismo , Inflamación , Accidente Cerebrovascular , Trombosis/metabolismo
3.
Blood Adv ; 6(11): 3367-3377, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35235941

RESUMEN

Coagulation activation is a prominent feature of severe acute respiratory syndrome coronavirus 2 (COVID-19) infection. Activation of the contact system and intrinsic pathway has increasingly been implicated in the prothrombotic state observed in both sterile and infectious inflammatory conditions. We therefore sought to assess activation of the contact system and intrinsic pathway in individuals with COVID-19 infection. Baseline plasma levels of protease:serpin complexes indicative of activation of the contact and intrinsic pathways were measured in samples from inpatients with COVID-19 and healthy individuals. Cleaved kininogen, a surrogate for bradykinin release, was measured by enzyme-linked immunosorbent assay, and extrinsic pathway activation was assessed by microvesicle tissue factor-mediated factor Xa (FXa; MVTF) generation. Samples were collected within 24 hours of COVID-19 diagnosis. Thirty patients with COVID-19 and 30 age- and sex-matched controls were enrolled. Contact system and intrinsic pathway activation in COVID-19 was demonstrated by increased plasma levels of FXIIa:C1 esterase inhibitor (C1), kallikrein:C1, FXIa:C1, FXIa:α1-antitrypsin, and FIXa:antithrombin (AT). MVTF levels were also increased in patients with COVID-19. Because FIXa:AT levels were associated with both contact/intrinsic pathway complexes and MVTF, activation of FIX likely occurs through both contact/intrinsic and extrinsic pathways. Among the protease:serpin complexes measured, FIXa:AT complexes were uniquely associated with clinical indices of disease severity, specifically total length of hospitalization, length of intensive care unit stay, and extent of lung computed tomography changes. We conclude that the contact/intrinsic pathway may contribute to the pathogenesis of the prothrombotic state in COVID-19. Larger prospective studies are required to confirm whether FIXa:AT complexes are a clinically useful biomarker of adverse clinical outcomes.


Asunto(s)
COVID-19 , Antitrombina III , Antitrombinas , Coagulación Sanguínea , Prueba de COVID-19 , Factor Xa , Humanos , Calicreínas/metabolismo
5.
Thromb Res ; 204: 22-28, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34111811

RESUMEN

Activation of the fibrinolytic system plays a central role in the host response to trauma. There is significant heterogeneity in the degree of fibrinolysis activation at baseline that is usually assessed by whole blood thromboelastography (TEG). Few studies have focused on plasma markers of fibrinolysis that could add novel insights into the frequency and mechanisms of fibrinolytic activation in trauma. Global fibrinolysis in plasma was assessed using a modified euglobulin clot lysis time (ECLT) assay in 171 major trauma patients and compared to commonly assessed analytes of fibrinolysis. The median ECLT in trauma patients was significantly shorter at 8.5 h (IQR, 1.3-19.5) compared to 19.9 h (9.8-22.6) in healthy controls (p < 0.0001). ECLT values ≤2.5th percentile of the reference range were present in 83 (48.5%) of trauma patients, suggesting increased fibrinolytic activation. Shortened ECLT values were associated with elevated plasmin-antiplasmin (PAP) complexes and free tissue plasminogen activator (tPA) levels in plasma. Sixteen (9.2%) individuals met the primary outcome for massive transfusion, here defined as the critical administration threshold (CAT) of 3 units of packed red cells in any 60-minute period within the first 24 h. In a univariate screen, plasma biomarkers associated with CAT included D-dimer (p < 0.001), PAP (p < 0.05), free tPA (p < 0.05) and ECLT (p < 0.05). We conclude that fibrinolytic activation, measured by ECLT, is present in a high proportion of trauma patients at presentation. The shortened ECLT is partially driven by high tPA levels and is associated with high levels of circulating PAP complexes. Further studies are needed to determine whether ECLT is an independent predictor of trauma outcomes.


Asunto(s)
Fibrinólisis , Activador de Tejido Plasminógeno , Tiempo de Lisis del Coágulo de Fibrina , Humanos , Tromboelastografía , Terapia Trombolítica
6.
Blood ; 138(3): 259-272, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-33827130

RESUMEN

Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fibrinolisina/metabolismo , Fibrinólisis/efectos de los fármacos , Quininógenos/metabolismo , Proteolisis/efectos de los fármacos , Acetaminofén/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Factor XII/genética , Factor XII/metabolismo , Femenino , Fibrinolisina/genética , Humanos , Quininógenos/genética , Masculino , Ratones , Ratones Noqueados , Precalicreína/genética , Precalicreína/metabolismo
7.
Res Pract Thromb Haemost ; 4(5): 789-798, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32685887

RESUMEN

Mounting evidence suggests that a variety of disease states are pathophysiologically related to activation of the contact system in vivo. The plasma contact system is composed of a cascade of serine proteases initiated by surface activation of factor XII, which can then proceed through a procoagulant pathway by activating the intrinsic coagulation factor XI, or a proinflammatory pathway by activating prekallikrein. Serpins are the primary endogenous inhibitors of the contact system, which irreversibly inhibit their respective protease(s), forming a stable complex. We modified an existing assay strategy for detecting these complexes in plasma using ELISAs and determined the effect of preanalytical variation caused by anticoagulant selection and processing time. The assays were sensitive and specific to inherited deficiency of individual contact factors. We conclude that these assays are robust and represent a relatively simple approach to the assessment of contact factor activation in plasma samples.

8.
J Thromb Haemost ; 18(9): 2329-2340, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32573897

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is characterized by chronic hemolytic anemia, vaso-occlusive crises, chronic inflammation, and activation of coagulation. The clinical complications such as painful crisis, stroke, pulmonary hypertension, nephropathy and venous thromboembolism lead to cumulative organ damage and premature death. High molecular weight kininogen (HK) is a central cofactor for the kallikrein-kinin and intrinsic coagulation pathways, which contributes to both coagulation and inflammation. OBJECTIVE: We hypothesize that HK contributes to the hypercoagulable and pro-inflammatory state that causes end-organ damage and early mortality in sickle mice. METHODS: We evaluated the role of HK in the Townes mouse model of SCD. RESULTS/CONCLUSIONS: We found elevated plasma levels of cleaved HK in sickle patients compared to healthy controls, suggesting ongoing HK activation in SCD. We used bone marrow transplantation to generate wild type and sickle cell mice on a HK-deficient background. We found that short-term HK deficiency attenuated thrombin generation and inflammation in sickle mice at steady state, which was independent of bradykinin signaling. Moreover, long-term HK deficiency attenuates kidney injury, reduces chronic inflammation, and ultimately improves survival of sickle mice.


Asunto(s)
Anemia de Células Falciformes , Quininógeno de Alto Peso Molecular , Anemia de Células Falciformes/complicaciones , Animales , Coagulación Sanguínea , Humanos , Riñón , Ratones , Trombina
9.
Open Forum Infect Dis ; 7(2): ofaa026, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32055640

RESUMEN

BACKGROUND: Coagulation activity among persons with HIV is associated with end-organ disease risk, but the pathogenesis is not well characterized. We tested a hypothesis that hypercoagulation contributes to disease risk, in part, via upregulation of inflammation. METHODS: Treatment effects of edoxaban (30 mg), a direct factor Xa inhibitor, vs placebo were investigated in a randomized, double-blind crossover trial among participants with HIV and viral suppression and D-dimer levels ≥100 ng/mL. During each 4-month crossover period, blood measures of coagulation, inflammation, and immune activation were assessed. Analyses of change on edoxaban vs change on placebo used linear mixed models. RESULTS: Forty-four participants were randomized, and 40 completed at least 1 visit during each study period. The mean age was 49 years, and the CD4+ count was 739 cells/mm3. Edoxaban treatment led to declines in D-dimer (44%) and thrombin-antithrombin complex (26%) but did not lower inflammatory or immune activation measures. More bruising or bleeding events occurred during edoxaban (n = 28) than during placebo or no drug periods (n = 15). CONCLUSIONS: The direct factor Xa inhibitor edoxaban led to a substantial reduction in coagulation but no effect on inflammation or immune activation. These results do not support that hypercoagulation contributes to ongoing inflammation during chronic antiretroviral therapy-treated HIV disease.

10.
Blood ; 135(10): 755-765, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31971571

RESUMEN

Storage lesion-induced, red cell-derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV-induced coagulation activation, the ability of storage lesion-induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV-induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.


Asunto(s)
Coagulación Sanguínea/fisiología , Micropartículas Derivadas de Células/fisiología , Eritrocitos/ultraestructura , Factor IX/metabolismo , Pruebas de Coagulación Sanguínea , Agregación Celular/fisiología , Comunicación Celular/fisiología , Humanos , Transducción de Señal/fisiología
11.
Blood ; 133(23): 2529-2541, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30952675

RESUMEN

Sickle cell disease (SCD) is associated with chronic activation of coagulation and an increased risk of venous thromboembolism. Erythrocyte sickling, the primary pathologic event in SCD, results in dramatic morphological changes in red blood cells (RBCs) because of polymerization of the abnormal hemoglobin. We used a mouse model of SCD and blood samples from sickle patients to determine if these changes affect the structure, properties, and dynamics of sickle clot formation. Sickling of RBCs and a significant increase in fibrin deposition were observed in venous thrombi formed in sickle mice. During ex vivo clot contraction, the number of RBCs extruded from sickle whole blood clots was significantly reduced compared with the number released from sickle cell trait and nonsickle clots in both mice and humans. Entrapment of sickled RBCs was largely factor XIIIa-independent and entirely mediated by the platelet-free cellular fraction of sickle blood. Inhibition of phosphatidylserine, but not administration of antisickling compounds, increased the number of RBCs released from sickle clots. Interestingly, whole blood, but not plasma clots from SCD patients, was more resistant to fibrinolysis, indicating that the cellular fraction of blood mediates resistance to tissue plasminogen activator. Sickle trait whole blood clots demonstrated an intermediate phenotype in response to tissue plasminogen activator. RBC exchange in SCD patients had a long-lasting effect on normalizing whole blood clot contraction. Furthermore, RBC exchange transiently reversed resistance of whole blood sickle clots to fibrinolysis, in part by decreasing platelet-derived PAI-1. These properties of sickle clots may explain the increased risk of venous thromboembolism observed in SCD.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Eritrocitos Anormales/patología , Trombosis/patología , Trombosis de la Vena/patología , Anemia de Células Falciformes/sangre , Animales , Eritrocitos/patología , Humanos , Ratones , Trombosis/sangre , Trombosis de la Vena/sangre , Trombosis de la Vena/etiología
12.
J Biol Chem ; 294(6): 1997-2008, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30523158

RESUMEN

Toll-like receptors (TLRs) are pathogen-recognition receptors that trigger the innate immune response. Recent reports have identified accessory proteins that provide essential support to TLR function through ligand delivery and receptor trafficking. Herein, we introduce leucine-rich repeats (LRRs) and calponin homology containing 4 (Lrch4) as a novel TLR accessory protein. Lrch4 is a membrane protein with nine LRRs in its predicted ectodomain. It is widely expressed across murine tissues and has two expression variants that are both regulated by lipopolysaccharide (LPS). Predictive modeling indicates that Lrch4 LRRs conform to the horseshoe-shaped structure typical of LRRs in pathogen-recognition receptors and that the best structural match in the protein database is to the variable lymphocyte receptor of the jawless vertebrate hagfish. Silencing Lrch4 attenuates cytokine induction by LPS and multiple other TLR ligands and dampens the in vivo innate immune response. Lrch4 promotes proper docking of LPS in lipid raft membrane microdomains. We provide evidence that this is through regulation of lipid rafts as Lrch4 silencing reduces cell surface gangliosides, a metric of raft abundance, as well as expression and surface display of CD14, a raft-resident LPS co-receptor. Taken together, we identify Lrch4 as a broad-spanning regulator of the innate immune response and a potential molecular target in inflammatory disease.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Receptores Toll-Like , Animales , Gangliósidos/metabolismo , Leucina , Ligandos , Receptores de Lipopolisacáridos , Lipopolisacáridos/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Conformación Proteica , Dominios Proteicos
13.
Environ Health Perspect ; 125(9): 097024, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28960179

RESUMEN

BACKGROUND: Arsenic exposure via drinking water impacts millions of people worldwide. Although arsenic has been associated epidemiologically with increased lung infections, the identity of the lung cell types targeted by peroral arsenic and the associated immune mechanisms remain poorly defined. OBJECTIVES: We aimed to determine the impact of peroral arsenic on pulmonary antibacterial host defense. METHODS: Female C57BL/6 mice were administered drinking water with 0, 250 ppb, or 25 ppm sodium arsenite for 5 wk and then challenged intratracheally with Klebsiella pneumoniae, Streptococcus pneumoniae, or lipopolysaccharide. Bacterial clearance and immune responses were profiled. RESULTS: Arsenic had no effect on bacterial clearance in the lung or on the intrapulmonary innate immune response to bacteria or lipopolysaccharide, as assessed by neutrophil recruitment to, and cytokine induction in, the airspace. Alveolar macrophage TNFα production was unaltered. By contrast, arsenic-exposed mice had significantly reduced plasma TNFα in response to systemic lipopolysaccharide challenge, together suggesting that the local airway innate immune response may be relatively preserved from arsenic intoxication. Despite intact intrapulmonary bacterial clearance during pneumonia, arsenic-exposed mice suffered dramatically increased bacterial dissemination to the bloodstream. Mechanistically, this was linked to increased respiratory epithelial permeability, as revealed by intratracheal FITC-dextran tracking, serum Club Cell protein 16 measurement, and other approaches. Consistent with barrier disruption at the alveolar level, arsenic-exposed mice had evidence for alveolar epithelial type 1 cell injury. CONCLUSIONS: Peroral arsenic has little effect on local airway immune responses to bacteria but compromises respiratory epithelial barrier integrity, increasing systemic translocation of inhaled pathogens and small molecules. https://doi.org/10.1289/EHP1878.


Asunto(s)
Intoxicación por Arsénico/microbiología , Arsénico/toxicidad , Sustancias Peligrosas/toxicidad , Pulmón/efectos de los fármacos , Administración Oral , Animales , Células Epiteliales , Femenino , Klebsiella pneumoniae , Pulmón/microbiología , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Permeabilidad
14.
ACS Med Chem Lett ; 4(8)2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24376907

RESUMEN

Evaluation of a series of MetAP inhibitors in an in vitro enzyme activity assay led to the first identification of potent molecules that show significant growth inhibition against Burkholderia pseudomallei. Nitroxoline analogs show excellent inhibition potency in the BpMetAP1 enzyme activity assay with the lowest IC50 of 30 nM, and inhibit the growth of B. pseudomallei and B. thailandensis at concentrations ≥ 31 µM.

15.
Mol Microbiol ; 90(4): 716-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24007341

RESUMEN

Bordetella species cause respiratory infections in mammals. Their master regulatory system BvgAS controls expression of at least three distinct phenotypic phases in response to environmental cues. The Bvg⁺ phase is necessary and sufficient for respiratory infection while the Bvg⁻ phase is required for survival ex vivo. We obtained large colony variants (LCVs) from the lungs of mice infected with B. bronchiseptica strain RBX9, which contains an in-frame deletion mutation in fhaB, encoding filamentous haemagglutinin. RBX9 also yielded LCVs when switched from Bvg⁻ phase conditions to Bvg⁺ phase conditions in vitro. We determined that LCVs are composed of both Bvg⁺ and Bvg⁻ phase bacteria and that they result from defective bvgAS positive autoregulation. The LCV phenotype was linked to the presence of a divergent promoter 5' to bvgAS, suggesting a previously undescribed mechanism of transcriptional interference that, in this case, leads to feedback-based bistability (FBM). Our results also indicate that a small proportion of RBX9 bacteria modulates to the Bvg⁻ phase in vivo. In addition to providing insight into transcriptional interference and FBM, our data provide an example of an in-frame deletion mutation exerting a 'polar' effect on nearby genes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/genética , Regulación Bacteriana de la Expresión Génica , Pulmón/microbiología , Infecciones del Sistema Respiratorio/microbiología , Factores de Virulencia de Bordetella/genética , Animales , Proteínas Bacterianas/genética , Bordetella bronchiseptica/metabolismo , Bordetella bronchiseptica/patogenicidad , Modelos Animales de Enfermedad , Escherichia coli/enzimología , Escherichia coli/genética , Retroalimentación Fisiológica , Humanos , Ratones , Ratones Endogámicos BALB C , Fenotipo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
16.
Part Fibre Toxicol ; 10: 16, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23618096

RESUMEN

BACKGROUND: Natural killer (NK) cells are an important lymphocyte population in the nasal mucosa and play important roles in linking the innate and the adaptive immune response. Their two main functions are direct cell-mediated cytotoxicity and the release of cytokines. They are important during viral infections and cancer. Due to their location in the nasal mucosa, NK cells are likely exposed to inhaled pollutants, such as diesel exhaust. Whether and how exposure to diesel exhaust particles (DEP) affects NK cell function in the context of viral infections has not been investigated. METHODS: NK cells were isolated from peripheral blood obtained from normal healthy volunteers and subsequently stimulated with the viral mimetic polyinosinic:polycytidylic acid (pI:C), DEP, or pI:C+DEP for 18 hours. NK cells were subsequently analyzed for changes in surface marker expression, cytokine production, gene expression changes, and cytotoxic function using flow cytometry, ELISA, qRT-PCR, and cell-mediated cytotoxicity assay, respectively. RESULTS: Stimulation of NK cells with pI:C and pI:C+DEP, but not DEP alone, increased the release of IL-1ß, IL-2, IL-4, IL-8, IL-10, IL-12p70, IFN-γ and TNF-α. As compared to pI:C alone or pI:C+DEP, the release of IL-1ß, IL-8 and TNF-α was significantly lower after DEP stimulation alone. Stimulation with pI:C alone increased the gene and protein expression of granzyme B and perforin, which was completely blunted by adding DEP. Addition of DEP further reduced CD16 expression in pI:C stimulated cells. Similarly, cell-mediated cytotoxicity was significantly reduced by the addition of DEP. CONCLUSIONS: In the context of viral infection, DEP potentially reduces NK cells' ability to kill virus-infected host cells, in spite of normal cytokine levels, and this may increase susceptibility to viral infections . This reduction in the potential ability of NK cells to kill virus-infected host cells may increase the susceptibility to viral infections after DEP exposure.


Asunto(s)
Citocinas/metabolismo , Inmunidad Mucosa/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Mucosa Nasal/efectos de los fármacos , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Exposición por Inhalación/efectos adversos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Fenotipo , Poli I-C/farmacología , ARN Mensajero/metabolismo , Medición de Riesgo , Factores de Tiempo , Virosis/inmunología , Virosis/virología , Adulto Joven
17.
Infect Immun ; 81(4): 1295-305, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23381998

RESUMEN

Bordetella pertussis and Bordetella bronchiseptica rely on the global two-component regulatory system BvgAS to control expression of distinct phenotypic phases. In the Bvg(-) phase, expression of vrg genes, including those required for motility in B. bronchiseptica, is activated and genes encoding virulence factors are not expressed. Conversely, in the Bvg(+) phase, genes encoding virulence factors are highly expressed while genes necessary for motility are repressed. Although several genetic analyses have demonstrated the importance of the Bvg(+) phase during respiratory infection, Bvg-regulated gene activation in B. bronchiseptica has not been investigated in vivo. To address this, we developed a plasmid, pGFLIP, that encodes a sensitive Flp recombinase-based fluorescent reporter system able to document gene activation both in vitro and in vivo. Using pGFLIP, we demonstrated that cyaA, considered to be a "late" Bvg(+) phase gene, is activated substantially earlier in B. bronchiseptica than B. pertussis following a switch from Bvg(-) to Bvg(+) phase conditions. We show that the altered activation of cyaA is not due to differences in the cyaA promoter or in the bvgAS alleles of B. bronchiseptica compared to B. pertussis, but appears to be species specific. Finally, we used pGFLIP to show that flaA remains repressed during infection, confirming that B. bronchiseptica does not modulate to the Bvg(-) phase in vivo.


Asunto(s)
Toxina de Adenilato Ciclasa/biosíntesis , Bordetella bronchiseptica/genética , Bordetella pertussis/genética , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/biosíntesis , Toxina de Adenilato Ciclasa/genética , Experimentación Animal , Animales , Bordetella bronchiseptica/patogenicidad , Bordetella pertussis/patogenicidad , Expresión Génica , Genes Reporteros , Genética Microbiana/métodos , Ratones , Ratones Endogámicos BALB C , Biología Molecular/métodos , Plásmidos , Recombinación Genética , Activación Transcripcional , Factores de Virulencia/genética
18.
Infect Immun ; 80(6): 2061-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22473603

RESUMEN

Bordetella pertussis and Bordetella bronchiseptica establish respiratory infections with notorious efficiency. Our previous studies showed that the fhaB genes of B. pertussis and B. bronchiseptica, which encode filamentous hemagglutinin (FHA), are functionally interchangeable and provided evidence that FHA-deficient B. bronchiseptica induces more inflammation in the lungs of mice than wild-type B. bronchiseptica. We show here that the robust inflammatory response to FHA-deficient B. bronchiseptica is characterized by the early and sustained influx of interleukin-17 (IL-17)-positive neutrophils and macrophages and, at 72 h postinoculation, IL-17-positive CD4(+) T cells, suggesting that FHA allows the bacteria to suppress the development of an IL-17-mediated inflammatory response. We also show that the cyaA genes of B. pertussis and B. bronchiseptica, which encode adenylate cyclase toxin (ACT), are functionally interchangeable and that ACT, specifically its catalytic activity, is required for B. bronchiseptica to resist phagocytic clearance but is neither required for nor inhibitory of the induction of inflammation if bacteria are present in numbers sufficient to persist during the first 3 days postinoculation. Incubation of bone marrow-derived macrophages with a ΔcyaA strain caused decreased production of IL-1ß and increased production of tumor necrosis factor alpha (TNF-α) and IL-12, while incubation with a ΔcyaA ΔfhaB strain caused increased production of IL-23. These data suggest that FHA and ACT both contribute to suppress the recruitment of neutrophils and the development of an IL-17-mediated immune response. To our knowledge, this is the first demonstration of a microbial pathogen suppressing IL-17-mediated inflammation in vivo as a strategy to evade innate immunity.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Adhesinas Bacterianas/metabolismo , Bordetella bronchiseptica/metabolismo , Inflamación/microbiología , Interleucina-17/inmunología , Factores de Virulencia de Bordetella/metabolismo , Toxina de Adenilato Ciclasa/genética , Adhesinas Bacterianas/genética , Animales , Bordetella bronchiseptica/genética , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/fisiología , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-17/metabolismo , Pulmón/patología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Factores de Tiempo , Factores de Virulencia de Bordetella/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...