RESUMEN
BACKGROUND: The continuous emergence of multidrug-resistant (MDR) Acinetobacter baumannii (Ab) strains poses further challenges in its control and clinical management. It is necessary to decipher the mechanisms underlying the high mortality of Ab infections to explore unconventional strategies for controlling outbreaks of drug-resistant infections. METHODS: The immune responses of Ab sepsis infection were investigated using flow cytometry, RNA-seq, qRT-PCR, and ELISA and scRNA-seq. The detailed pathways mediating Ab immune responses were also depicted and a specific therapy was developed based on the understanding of the mechanisms underlying Ab-induced cytokine storms. FINDINGS: The results highlighted the critical role of alveolar and interstitial macrophages as targets of Ab during the infection process. These cells were found to undergo polarization towards the M1 phenotype, triggering a cytokine storm that eventually caused the death of the host. The polarization and excessive inflammatory response mediated by macrophages were mainly regulated by the TLR2/Myd88/NF-κB signaling pathway. Suppression of Ab-triggered inflammatory responses and M1 polarization by the drug naproxen (NPXS) was shown to confer full protection of mice from lethal infections. INTERPRETATION: The findings in this work depict the major mechanisms underlying the high mortality rate of Ab infections and highlight the clinical potential application of anti-inflammatory drugs or immunosuppressants in reducing the mortality of such infections, including those caused by MDR strains. FUNDING: Funding sources are described in the acknowledgments section.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Macrófagos , Acinetobacter baumannii/efectos de los fármacos , Animales , Ratones , Infecciones por Acinetobacter/mortalidad , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Síndrome de Liberación de Citoquinas/prevención & control , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Citocinas/metabolismo , HumanosRESUMEN
Gut damage during carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HvKP) infection is associated with a death risk. Understanding the mechanisms by which CR-HvKP causes intestinal damage and gut microbiota alteration, and the impact on immunity, is crucial for developing therapeutic strategies. This study investigated if gastrointestinal tract damage and disruption of gut microbiota induced by CR-HvKP infection undermined host immunity and facilitated multi-organ invasion of CR-HvKP; whether the therapeutic value of the rifampicin (RIF) and zidovudine (ZDV) combination was attributed to their ability to repair damages and restore host immunity was determined. A sepsis model was utilized to assess the intestinal pathological changes. Metagenomic analysis was performed to characterize the alteration of gut microbiota. The effects of the RIF and ZDV on suppressing inflammatory responses and improving immune functions and gut microbiota were evaluated by immunopathological and transcriptomic analyses. Rapid colonic damage occurred upon activation of the inflammation signaling pathways during lethal infections. Gut inflammation compromised host innate immunity and led to a significant decrease in probiotics abundance, including Bifidobacterium and Lactobacillus. Treatment with combination drugs significantly attenuated the inflammatory response, up-regulated immune cell differentiation signaling pathways, and promoted the abundance of Bifidobacterium (33.40â¯%). Consistently, supplementation of Bifidobacterium alone delayed the death in sepsis model. Gut inflammation and disrupted microbiota are key disease features of CR-HvKP infection but can be reversed by the RIF and ZDV drug combination. The finding that these drugs can restore host immunity through multiple mechanisms is novel and deserves further investigation of their clinical application potential.
Asunto(s)
Microbioma Gastrointestinal , Infecciones por Klebsiella , Klebsiella pneumoniae , Rifampin , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/mortalidad , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Rifampin/uso terapéutico , Rifampin/farmacología , Masculino , Zidovudina/uso terapéutico , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Intestinos/microbiología , Intestinos/patología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Ratones Endogámicos C57BL , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Sepsis/inmunología , Sepsis/mortalidad , Ratones , Inmunidad Innata/efectos de los fármacosRESUMEN
Acinetobacter baumannii (AB) infections have become a global public health concern due to the continued increase in the incidence of infection and the rate of resistance to carbapenems. This study aimed to investigate the genomic features of AB strains recovered from a tertiary hospital and assess the clinical implications of the findings. A total of 217 AB strains were collected between 2016 and 2018 at a tertiary hospital in Guangzhou, with 183 (84.33%) being carbapenem-resistant AB (CRAB), with the main mechanism being the carriage of the blaOXA-23 gene. The overall mortality rate of patients caused by such strains was 15.21% (n = 33). Artificial lung ventilation and the use of meropenem were mortality risk factors in AB-infected patients, while KL2 AB infection was negatively associated. Core genome multilocus sequence typing and clustering analysis were performed on the integrated AB genome collection from the NCBI database and this study to illustrate the population structure among China. The results revealed diverse core genome profiles (n = 17) among AB strains from China, and strains from this single hospital exhibited most of the core genome profiles (n = 13), suggesting genetic variability within the hospital and transmission across the country. These findings show that the high transmission potential of the CRAB strains and meropenem usage that confers a selective advantage of CRAB clinically are two major factors that pose significant challenges to the effective clinical management of AB infections. Understanding the genetic features and transmission patterns of clinical AB strains is crucial for the effective control of infections caused by this pathogen.
RESUMEN
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a global threat due to its high mortality in clinical patients. However, the specific mechanisms underlying this increased mortality remain unclear. The objective of this study is to investigate how the development of a resistance phenotype contributes to the significantly higher mortality associated with this pathogen. To achieve this, a collection of isogeneic strains was generated. The clinical carbapenem-susceptible K. pneumoniae (CSKP) strain HKU3 served as the control isolate, while HKU3-KPC was created through conjugation with a blaKPC-2-bearing plasmid and served as clinical CRKP strain. Using a sepsis model, it was demonstrated that both HKU3 and HKU3-KPC exhibited similar levels of virulence. Flow cytometry, RNA-seq, and ELISA analysis were employed to assess immune cell response, M1 macrophage polarization, and cytokine storm induction, revealing that both strains elicited comparable types and levels of these immune responses. Subsequently, meropenem was utilized to treat K. pneumoniae infection, and it was found that meropenem effectively reduced bacterial load, inhibited M1 macrophage polarization, and suppressed serum cytokine production during HKU3 (CSKP) infection. However, these effects were not observed in the case of HKU3-KPC (CRKP) infection. These findings provide evidence that the high mortality associated with CRKP is attributed to its enhanced survival within the host during antibiotic treatment, resulting in a cytokine storm and subsequent host death. The development of an effective therapy for CRKP infections could significantly reduce the mortality caused by this pathogen.
Asunto(s)
Antibacterianos , Enterobacteriaceae Resistentes a los Carbapenémicos , Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Meropenem , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/mortalidad , Infecciones por Klebsiella/tratamiento farmacológico , Virulencia , Antibacterianos/farmacología , Meropenem/farmacología , Carbapenémicos/farmacología , Animales , Ratones , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Sepsis/microbiología , Sepsis/mortalidad , Sepsis/tratamiento farmacológico , Citocinas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Carga BacterianaRESUMEN
This study employs a comprehensive approach combining metagenomic analysis and bacterial isolation to elucidate the microbial composition, antibiotic resistance genes (ARGs), and virulence factors (VFGs) present in shrimps from market and supermarket. Metagenomic analysis of shrimps revealed a dominance of Proteobacteria and Bacteroidetes with Firmicutes notably enriched in some samples. On the other hand, the dominant bacteria isolated included Citrobacter portucalensis, Escherichia coli, Salmonella enterica, Vibrio species and Klebsiella pneumonaie. Metagenomic analysis unveiled a diverse spectrum of 23 main types and 380 subtypes of ARGs in shrimp samples including many clinical significant ARGs such as blaKPC, blaNDM, mcr, tet(X4) etc. Genomic analysis of isolated bacterial strains identified 14 ARG types with 109 subtype genes, which complemented the metagenomic data. Genomic analysis also allowed us to identify a rich amount of MDR plasmids, which provided further insights into the dissemination of resistance genes in different species of bacteria in the same samples. Examination of VFGs and mobile genetic elements (MGEs) in both metagenomic and bacterial genomes revealed a complex landscape of factors contributing to bacterial virulence and genetic mobility. Potential co-occurrence patterns of ARGs and VFGs within human pathogenic bacteria underlined the intricate interplay between antibiotic resistance and virulence. In conclusion, this integrated analysis for the first time provides a comprehensive view and sheds new light on the potential hazards associated with shrimp products in the markets. The findings underscore the necessity of ongoing surveillance and intervention strategies to mitigate risks posed by antibiotic-resistant bacteria in the food supply chain using the novel comprehensive approaches.
Asunto(s)
Decápodos , Genes Bacterianos , Animales , Humanos , Antibacterianos/farmacología , Bacterias/genética , Plásmidos , Farmacorresistencia Microbiana/genética , CrustáceosRESUMEN
Antibiotic resistance is a global health issue, with Klebsiella pneumoniae (KP) posing a particular threat due to its ability to acquire resistance to multiple drug classes rapidly. OXA-232 is a carbapenemase that confers resistance to carbapenems, a class of antibiotics often used as a last resort for treating severe bacterial infections. The study reports the earliest known identification of six OXA-232-producing KP strains that were isolated in Zhejiang, China, in 2008 and 2009 within a hospital, two years prior to the first reported identification of OXA-232 in France. The four KP strains carry the OXA-232 gene and exhibit hypervirulent loci, suggesting a broader temporal and geographical spread and integration of this resistance and virulence than previously recognized with implications for public health. Global analysis of all OXA-232-bearing KP strains revealed that OXA-232-encoding plasmids are conservative, while the strains were very diverse suggesting the plasmid mediated transmission of this carbapenemase genes. Importantly, a large proportion of the OXA-232-bearing KP strains also carried virulence plasmids, in particular the recent emergence of ST15 type of KP that carried both OXA-232-encoding plasmids and hypervirulent (hv) plasmids in China since 2019, highlighting the importance of the emergence of this type of KP strains in clinical setting. The early detection and investigations of OXA-232 in these strains warrants the retrospective studies to uncover the true timeline of antibiotic resistance spread, which could provide valuable insights for shaping future strategies to tackle the global health crisis.
Asunto(s)
Proteínas Bacterianas , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Plásmidos/genética , ChinaRESUMEN
The therapeutic effects of antibodies include neutralization of pathogens, activation of the host complement system, and facilitation of phagocytosis of pathogens. However, antibody alone has never been shown to exhibit bactericidal activity. In this study, we developed a monoclonal antibody that targets the bacterial cell surface component Pseudaminic acid (Pse). This monoclonal antibody, Pse-MAB1, exhibited direct bactericidal activity on Acinetobacter baumannii strains, even in the absence of the host complements or other immune factors, and was able to confer a protective effect against A. baumannii infections in mice. This study provides new insight into the potential of developing monoclonal antibody-based antimicrobial therapy of multidrug resistant bacterial infections, especially those which occurred among immunocompromised patients.
RESUMEN
BACKGROUND: The epidemiological features of the Klebsiella pneumoniae causing bloodstream infections in Hong Kong and their potential threats to human health remained unknown. METHODS: K. pneumoniae strains collected from four hospitals in Hong Kong during the period of 2009-2018 were subjected to molecular typing, string test, antimicrobial susceptibility testing, whole genome sequencing and analysis. Clinical data of patients from whom these strains were isolated were analyzed retrospectively using univariate and multivariate logistic regression approaches. FINDINGS: The 240 Klebsiella spp. strains belonged to 123 different STs and 63 different capsule loci (KLs), with KL1 and KL2 being the major type. 86 out of 212 BSI-KP (40.6%) carried at least one of the virulence genes iuc, iro, rmpA or rmpA2. Virulence plasmid correlated well with the string test positive result, yet 8 strains without rmp genes were also hypermucoviscous, which was due to wzc mutation. The mortality rate of bloodstream infection patients was 43.0%. Univariant analysis showed that factors including renal replacement therapy (FDR adjusted p = 0.0007), mechanical ventilation (FDR adjusted p < 0.0001) and respiratory sepsis (FDR adjusted p < 0.0001) were found to pose the highest risk of death upon infection by Klebsiella spp. INTERPRETATION: This study revealed the high mortality rate and risk factors associated with bloodstream infections caused by K. pneumoniae in Hong Kong, which warrants immediate action to develop effective solution to tackle this problem. FUNDING: Theme Based Research Scheme (T11-104/22-R), Research Impact Fund (R5011-18 F) and Postdoctoral Fellowship (PDFS2223-1S09).
Asunto(s)
Infecciones por Klebsiella , Sepsis , Humanos , Hong Kong/epidemiología , Klebsiella/genética , Epidemiología Molecular , Estudios Retrospectivos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , AntibacterianosRESUMEN
Klebsiella pneumoniae is an important clinical bacterial pathogen that has hypervirulent and multidrug-resistant variants. Uniform Manifold Approximation and Projection (UMAP) was used to cluster genomes of 16 797 K. pneumoniae strains collected, based on core genome distance, in over 100 countries during the period 1937 to 2021. A total of 60 high-density genetic clusters of strains representing the major epidemic strains were identified among these strains. Using UMAP bedding, the relationship between genetic cluster, capsular polysaccharide (KL) types and sequence type (ST) of the strains was clearly demonstrated, with some important STs, such as ST11 and ST258, found to contain multiple clusters. Strains within the same cluster often exhibited significant diverse features, such as originating from different areas and being isolated in different years, as well as carriage of different resistance and virulence genes. These data enable the routes of evolution of the globally prevalent K. pneumoniae strains to be traced. Alarmingly, carbapenem-resistant K. pneumoniae strains accounted for 51.7% of the test strains and worldwide transmission was observed. Carbapenem-resistant and hypervirulent K. pneumoniae strains are mainly reported in China; however, these strains are increasingly reported in other parts of the world. Also identified in this study were several key genetic loci that facilitate development of a new K. pneumoniae typing method to differentiate between high- and low-risk strains. In particular, the acrR, ompK35 and hha genes were predicted to play a key role in expression of the resistance and virulence phenotypes.
Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Carbapenémicos , Virulencia/genética , Genómica , Antibacterianos/farmacología , beta-Lactamasas/genéticaRESUMEN
Understanding tetracycline resistance in Vibrio parahaemolyticus from food products is crucial for effective control measures against this foodborne pathogen. This study aimed to investigate the prevalence, evolution routes, and mechanism of transmission of tetracycline resistance in Vibrio parahaemolyticus isolates collected from food products in Shenzhen, China. A total of 2342 non-duplicate Vibrio parahaemolyticus were isolated from 3509 food samples during the period 2013-2021. Among these 2342 Vibrio parahaemolyticus strains, 530 (21.37 %) were resistant to tetracycline. These tetracycline-resistant Vibrio parahaemolyticus strains were mainly isolated from shrimp samples, with the highest resistance rate (46.9 %) observed in 2019. Phylogenetic and genomic analyses of 387 isolates carrying the tet genes revealed that five different types of tet genes (tet(34), tet(A), tet(B), tet(M), and tet(E)) were present. The tet(A) gene was the most common (65 % of isolates), while tet(E) and tet(M) genes were only detected in specific years. Although tet(A) is the most commonly detected gene, it only encodes resistance in a low percentage of strains (47/129). On the other hand, the resistance rate is highest in isolates carrying tet(B) (41/55). Interestingly, V. parahaemolyticus carrying the tet genes were not necessarily tetracycline-resistant, and vice versa. A total of six different types of plasmids and two transposable units were found to carry the tet genes. V. parahaemolyticus strains that harbored these plasmids were often resistant to multiple antibiotics, indicating that horizontal transfer of antibiotic resistance genes is common among V. parahaemolyticus strains. Our findings suggest a high prevalence of tetracycline resistance in Vibrio parahaemolyticus strains recovered from food products in Shenzhen, China. These results provide valuable insight into the evolution and transmission of tetracycline resistance in foodborne Vibrio parahaemolyticus isolates and highlight the need for effective control measures to prevent the spread of antibiotic resistance.
Asunto(s)
Resistencia a la Tetraciclina , Vibrio parahaemolyticus , Resistencia a la Tetraciclina/genética , Prevalencia , Filogenia , Antibacterianos/farmacología , Tetraciclina/farmacología , Vibrio parahaemolyticus/genética , China/epidemiologíaRESUMEN
In this work, we collected foodborne Salmonella strains in Shenzhen, China, during 2014-2017 and investigated the genetic profile of all cefotaxime-resistant isolates in the collection. The strains were subjected to antimicrobial susceptibility tests, whole-genome sequencing, bioinformatics analysis, and conjugation studies. A total of 79 cefotaxime-resistant Salmonella were identified and found to exhibit multidrug resistance. Resistance rate recorded during the study period increased from 1.9% to 9.1%. Salmonella Typhimurium was the predominant serovar, and CTX-M family genes were dominant among the ESBLs genes detected. Notably, CTX-M-bearing plasmids or transposons often contain other drug resistance genes. Furthermore, a combination of CTX-M-55 and CTX-M-65 genes was detected for the first time in foodborne Salmonella strains. Our findings reveal the prevalence and molecular characteristics of cefotaxime-resistant foodborne Salmonella strains in southern China. IMPORTANCE Cefotaxime-resistant Salmonella strains pose an increasing threat to human health by causing infections with limited treatment options. It is therefore necessary to undertake a surveillance on the prevalence of such strains and investigate the resistance and transmission mechanisms. In this work, various ESBL genes flanked by different IS located in different mobile genetic elements were detectable among cefotaxime-resistant Salmonella strains. These data show that the high prevalence and genotypic diversity of cefotaxime-resistant foodborne Salmonella strains in China are possibly attributed to the evolution and transmission of a wide range of multidrug resistance-encoding mobile genetic elements.
RESUMEN
INTRODUCTION: Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is effective in alleviating cognitive deficits in Alzheimer's disease (AD). However, the strategy for target determination and the mechanisms for cognitive improvement remain unclear. METHODS: One hundred and thirteen elderly subjects were recruited in this study, including both cross-sectional (n = 79) and longitudinal experiments (the rTMS group: n = 24; the sham group: n = 10). The cross-sectional experiment explored the precise intervention target based on the cortical-hippocampal network. The longitudinal experiment investigated the clinical efficacy of neuro-navigated rTMS treatment over a four-week period and explored its underlying neural mechanism using seed-based and network-based analysis. Finally, we applied connectome-based predictive modeling to predict the rTMS response using these functional features at baseline. RESULTS: RTMS at a targeted site of the left angular gyrus (MNI: -45, -67, 38) significantly induced cognitive improvement in memory and language function (p < 0.001). The improved cognition correlated with the default mode network (DMN) subsystems. Furthermore, the connectivity patterns of DMN subsystems (r = 0.52, p = 0.01) or large-scale networks (r = 0.85, p = 0.001) at baseline significantly predicted the Δ language cognition after the rTMS treatment. The connectivity patterns of DMN subsystems (r = 0.47, p = 0.019) or large-scale networks (r = 0.80, p = 0.001) at baseline could predict the Δ memory cognition after the rTMS treatment. CONCLUSION: These findings suggest that neuro-navigated rTMS targeting the left angular gyrus could improve cognitive function in AD patients. Importantly, dynamic regulation of the intra- and inter-DMN at baseline may represent a potential predictor for favorable rTMS treatment response in patients with cognitive impairment.
Asunto(s)
Enfermedad de Alzheimer , Estimulación Magnética Transcraneal , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/psicología , Estudios Transversales , Lóbulo Parietal , Resultado del Tratamiento , Imagen por Resonancia MagnéticaRESUMEN
Colistin resistance mediated by mcr-1-bearing plasmids poses a new challenge to treatment of Salmonella infections. To probe the scale of the problem that colistin resistance mediated by mcr-1 plasmids among Salmonella, the prevalence of mcr-1 in foodborne Salmonella recovered from 2014 to 2017 in Shenzhen, China and genetic profile of mcr-1 positive isolates were investigated. All mcr-1 positives Salmonella strains were collected from food products, characterized by PCR and MALDI-TOF, and subjected to antimicrobial susceptibility testing, whole-genome sequencing, bioinformatics analysis, and conjugation. Twenty-eight mcr-1-positive Salmonella strains were recovered from pork. The rate of recovery displayed an increasing trend and was often accompanied by multidrug resistance. Salmonella Typhimurium was the most prevalent serotypes. Comparative genomic analysis indicated that the mcr-1 gene was located on the transferable IncX4 plasmids, as well as the IncHI2 plasmids, in which the gene was associated with ISApl1. All two types of plasmids were often detected in zoonotic pathogen. Transferable 251K mcr-1-bearing IncHI2 type plasmids were frequently reported in human and food-producing animals, but this is first time to detect a certain number in food. These findings show that dissemination of these two types of plasmids is responsible for the increase in the prevalence of colistin resistance in Salmonella strains in recent years, leading to rapid emergence of MDR Salmonella upon acquisition of these two mcr-1-bearing plasmids. Transmission of IncX4 and IncHI2 plasmids in Salmonella would cause huge public health concerns in controlling foodborne infections caused by Salmonella.
Asunto(s)
Colistina , Proteínas de Escherichia coli , Animales , Antibacterianos/farmacología , China/epidemiología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Salmonella typhimurium/genéticaRESUMEN
Metagenome assembly is a core yet methodologically challenging step for taxonomic classification and functional annotation of a microbiome. This study aims to generate the high-resolution human gut metagenome using both Illumina and Nanopore platforms. Assembly was achieved using four assemblers, including Flye (Nanopore), metaSPAdes (Illumina), hybridSPAdes (Illumina and Nanopore), and OPERA-MS (Illumina and Nanopore). Hybrid metagenome assembly was shown to generate contigs with almost same sizes comparable to those produced using Illumina reads alone, but was more contiguous, informative, and longer compared with those assembled with Illumina reads only. In addition, hybrid metagenome assembly enables us to obtain complete plasmid sequences and much more AMR gene-encoding contigs than the Illumina method. Most importantly, using our workflow, 58 novel high-quality metagenome bins were obtained from four assembly algorithms, particularly hybrid assembly (47/58), although metaSPAdes could provide 11 high-quality bins independently. Among them, 29 bins were currently uncultured bacterial metagenome-assembled genomes. These findings were highly consistent and supported by mock community data tested. In the analysis of biosynthetic gene clusters (BGCs), the number of BGCs in the contigs from hybridSPAdes (241) is higher than that of contigs from metaSPAdes (233). In conclusion, hybrid metagenome assembly could significantly enhance the efficiency of contig assembly, taxonomic binning, and genome construction compared with procedures using Illumina short-read data alone, indicating that nanopore long reads are highly useful in metagenomic applications. This technique could be used to create high-resolution references for future human metagenome studies.
RESUMEN
Background: Cetuximab is one of the most widely used monoclonal antibodies to treat patients with RAS/BRAF wild-type metastatic colorectal cancer (mCRC). Unfortunately, cetuximab resistance often occurs during targeted therapy. However, the underlying epigenetic mechanisms remain unclear. Our previous study demonstrated that the exosomal transfer of urothelial carcinoma-associated 1 (UCA1) confers cetuximab resistance to CRC cells. The goal of this study was to elucidate the detailed role of UCA1 in cetuximab resistance in CRC and the underlying molecular mechanism. Methods: In vitro and in vivo functional studies were performed to assess the role of UCA1 in cetuximab resistance in CRC cell lines and xenograft models. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to examine UCA1 localization and expression. Bioinformatics analysis was performed to predict the potential mechanism of UCA1, which was further validated by the dual-luciferase reporter assay and the RNA immunoprecipitation (RIP) assay. Cells treated with indicators were subjected to Cell Counting Kit-8 (CCK-8) and western blotting to investigate the role of hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition (c-MET) signalling in UCA1-mediated cetuximab resistance. Results: We showed that UCA1 decreased CRC cell sensitivity to cetuximab by suppressing apoptosis. Mechanistic studies revealed that UCA1 promoted cetuximab resistance by competitively binding miR-495 to facilitate HGF and c-MET expression in CRC cells. Moreover, HGF was shown to attenuate the cetuximab-induced inhibition of cell proliferation by activating the HGF/c-MET pathway in CRC cells. Conclusion: We provide the first evidence of a UCA1-miR-495-HGF/c-MET regulatory network involved in cetuximab resistance in CRC. Therefore, UCA1 has potential as a predictor and therapeutic target for cetuximab resistance.
RESUMEN
Researches were reported that respiratory diseases can lead to male infertility; however, it is unclear whether there is a relationship between pulmonary fibrosis (PF) and male infertility. This study examined the influence of PF on sperm quality and its mechanisms. The key signalling pathway of male infertility caused by PF was predicted based on bioinformatics research. After modelling, we evaluated semen quality. Real-time quantitative polymerase chain reaction and Western blotting were used to measure the protein and mRNA expression levels of phosphatidylinositol 3-kinase (PI3K), phosphorylation-protein kinase B (p-Akt) and B-cell lymphoma 2 (Bcl2) in rat testicular cells. Compared with group A (48.77 ± 4.67; 59.77 ± 4.79), the sperm concentration and total sperm viability of group B (8.44 ± 1.71; 15.39 ± 3.48) showed a downward trend (p < 0.05). Western blotting showed that the protein expressions of PI3K, p-Akt and Bcl2 in the testes of group B (0.30 ± 0.06; 0.27 ± 0.05; 0.15 ± 0.03) was significantly lower than those of group A (0.71 ± 0.07; 0.72 ± 0.06; 0.50 ± 0.06) (p < 0.05). The hypoxic environment induced by PF can inhibit the expression of PI3K, p-Akt and Bcl2 protein and eventually cause dysfunctional spermatogenesis.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Animales , Masculino , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/metabolismo , Ratas , Análisis de Semen , EspermatozoidesRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Huoxue Tongluo Qiwei Decoction is a classical herbal formula, which can improve the symptoms of erectile dysfunction (ED) patients and has a good therapeutic effect on patients with diabetic erectile dysfunction (DIED). The main function of Huoxue Tongluo Qiwei Decoction is to stimulate the blood circulation and dredge collaterals, remove blood stasis, and calm wind. RATIONALE: To further explore the mechanism of Huoxue Tongluo Qiwei Decoction in the treatment of DIED, related animal experiments were designed. MATERIALS AND METHODS: The chemical constituents of Huoxue Tongluo Qiwei Decoction were identified with the help of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A rat model was induced by streptozotocin (STZ) and screened by apomorphine (APO). Serum sE-selectin, lysyl oxidase-1 (LOX-1), malondialdehyde (MDA) and other markers of vascular endothelial injury and related indicators of oxidative stress were studied through enzyme-linked immunosorbent assay (ELISA). The endothelial cells and ultrastructure of the corpus cavernosum were examined by electron microscopy and HE staining. The expression of protein and mRNA was detected by western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The results of the study revealed that the sE-selectin, LOX-1, intercellular adhesion molecule-1 (sICAM-1), endothelial microparticles (EMPs), P-selectin (CD62P), and MDA levels in the serum of group M rats were considerably higher than rats of group K, while the superoxide dismutase (SOD) level showed a significant decrease. In addition, the PKC pathway was activated, and the expression of related proteins and mRNA was increased. After 8 weeks of intervention with Huoxue Tongluo Qiwei Decoction and LY333531, serum level of sE-selectin, LOX-1, sICAM-1, EMPs, CD62P and MDA in L, D and G groups were remarkably lower than group M while SOD level increased significantly, protein kinase C (PKC) pathway was inhibited with the improved erectile function of rats. CONCLUSION: Huoxue Tongluo Qiwei Decoction can inhibit the expression of protein and mRNA of the PKCß signaling pathway related molecules in DIED rats to cure the injury of vascular endothelial, enhance antioxidant capacity, and prevent the activation of platelet, thus improving erectile function in rats with DIED.
Asunto(s)
Complicaciones de la Diabetes/patología , Medicamentos Herbarios Chinos/uso terapéutico , Disfunción Eréctil/tratamiento farmacológico , Erección Peniana/efectos de los fármacos , Fitoterapia , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Experimental , Endotelio Vascular , Disfunción Eréctil/etiología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Selectina-P/genética , Selectina-P/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Over recent years, an increasing body of literature has focused on the relationship between erectile dysfunction (ED) and migraine. However, the specific mechanism is unclear. MATERIALS AND METHODS: We used a bioinformatic database to predict the targets and pathways associated with migraine and ED. Twenty male SD rats were randomly divided into a blank group (Group A, n = 10) and a migraine model group (Group B, n = 10). The rats in Group A were subcutaneously injected with normal saline (2 ml/kg) into the back of the neck. Rats in Group B were subcutaneously injected with nitroglycerin 10 mg/kg (5 mg/ml) into the back of the neck in order to create an animal model of migraine. Next, we carried out the measurement of erectile function. We used hematoxylin and eosin (HE) to compare the tissue structure of the cavernous body of the penis. Western blotting was used to determine the expression levels of PI3K, p-AKT, and p-mTOR in the protein; Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) was used to determine the expression levels of PI3K, AKT, and mTOR in the messenger ribonucleic acid (mRNA). RESULTS: There are 117 intersection targets of migraine and ED, involving 188 cell biological processes (BP), 21 cellular components (CC), 31 molecular functions (MF), and 65 signaling pathways. HE staining results show that there were no significant differences between Group A and Group B with regard to any of the parameters. Compared with Group A, the levels of the PI3K, p-AKT, and p-mTOR proteins and PI3K, AKT, and mTOR mRNAs in Group B decreased (P < 0.01). CONCLUSIONS: The decline of erectile function in a rat model of migraine was associated with the PI3K/Akt/mTOR signaling pathway.