Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589317

RESUMEN

OBJECTIVE: Erythropoietin-producing hepatocellular (Eph)/Ephrin cell-cell signaling is emerging as a key player in tissue fibrogenesis. The aim of this study was to test the hypothesis that the receptor tyrosine kinase EphB2 mediates dermal fibrosis in systemic sclerosis (SSc). METHODS: We assessed normal and SSc human skin biopsies for EphB2 expression. The in vivo role of EphB2 in skin fibrosis was investigated by subjecting EphB2-knockout mice to both bleomycin-induced and tight skin (Tsk1/+) genetic mouse models of skin fibrosis. EphB2 kinase-dead and overactive point mutant mice were used to evaluate the role of EphB2 forward signaling in bleomycin-induced dermal fibrosis. In vitro studies were performed on dermal fibroblasts from patients with SSc and healthy controls, which was followed by in vivo analysis of fibroblast-specific Ephb2-deficient mice. RESULTS: Expression of EphB2 is up-regulated in SSc skin tissue and explanted SSc dermal fibroblasts compared with healthy controls. EphB2 expression is elevated in two animal models of dermal fibrosis. In mice, EphB2 drives dermal fibrosis in both the bleomycin and the Tsk1/+ models of skin fibrosis. EphB2 forward signaling is a critical mediator of dermal fibrosis. Transforming growth factor-ß (TGF-ß) cytokines up-regulate EphB2 in dermal fibroblasts via noncanonical TGF-ß/mother against decapentaplegic signaling, and silencing EPHB2 in human dermal fibroblasts is sufficient to dampen TGF-ß-induced fibroblast-to-myofibroblast differentiation. Moreover, mice with fibroblast-specific deletion of EphB2 showed impaired fibroblast-to-myofibroblast differentiation and reduced skin fibrosis upon bleomycin challenge. CONCLUSION: Our data implicate TGF-ß regulation of EphB2 overexpression and kinase-mediated forward signaling in the development of dermal fibrosis in SSc. EphB2 thus represents a potential new therapeutic target for SSc.

2.
Clin Sci (Lond) ; 135(17): 2127-2142, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34462781

RESUMEN

Erythropoietin producing hepatocellular (Eph)-Eph receptor interacting (Ephrin) receptor-ligand signaling has been implicated in the development of tissue fibrosis, though it has not been well defined in the kidney. We detected substantial up-regulation of expression and phosphorylation of the EphB2 receptor tyrosine kinase in fibrotic kidney tissue obtained both from mice subjected to the unilateral renal ischemia-reperfusion (IR) model at 14 days and in patients suffering from chronic kidney disease (CKD). Knockout (KO) mice lacking EphB2 expression exhibited a normal renal structure and function, indicating no major role for this receptor in kidney development or action. Although IR injury is well-known to cause tissue damage, fibrosis, and renal dysfunction, we found that kidneys from EphB2KO mice showed much less renal tubular injury and retained a more preserved renal function. IR-injured kidneys from EphB2 KOs exhibited greatly reduced fibrosis and inflammation compared with injured wildtype (WT) littermates, and this correlated with a significant reduction in renal expression of profibrotic molecules, inflammatory cytokines, NADPH oxidases, and markers for cell proliferation, tubular epithelial-to-mesenchymal transition (EMT), myofibroblast activation, and apoptosis. A panel of 760 fibrosis-associated genes were further assessed, revealing that 506 genes in WT mouse kidney following IR injury changed their expression. However, 70.9% of those genes were back to or close to normal in expression when EphB2 was deleted. These data indicate that endogenous EphB2 expression and signaling are abnormally activated after kidney injury and subsequently contribute to the development of renal fibrosis via regulation of multiple profibrotic pathways.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón/metabolismo , Receptor EphB2/metabolismo , Daño por Reperfusión/metabolismo , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptor EphB2/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33627480

RESUMEN

Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.


Asunto(s)
Sistema Nervioso Central/enzimología , Clortetraciclina , Neuralgia , Inhibidores de Proteínas Quinasas , Receptor EphB1 , Animales , Clortetraciclina/química , Clortetraciclina/farmacología , Cristalografía por Rayos X , Humanos , Masculino , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/enzimología , Dominios Proteicos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor EphB1/antagonistas & inhibidores , Receptor EphB1/química , Receptor EphB1/metabolismo
4.
Mol Psychiatry ; 26(8): 3956-3969, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31772302

RESUMEN

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.


Asunto(s)
Región CA3 Hipocampal/fisiología , Memoria , Receptores de N-Metil-D-Aspartato , Conducta Social , Ubiquitina-Proteína Ligasas , Animales , Trastornos de la Memoria/genética , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
5.
Mol Biol Cell ; 31(11): 1167-1182, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32238105

RESUMEN

Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.


Asunto(s)
Caveolas/metabolismo , Receptor EphB1/metabolismo , Animales , Caveolas/fisiología , Caveolina 1/metabolismo , Células Endoteliales/metabolismo , Efrina-B1/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor EphB1/fisiología , Transducción de Señal/fisiología
6.
Commun Biol ; 2: 372, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31633063

RESUMEN

While ephrin-B ligands and EphB receptors are expressed to high levels in the learning centers of the brain, it remains largely unknown how their trans-synaptic interactions contribute to memory. We find that EphB2 forward signaling is needed for contextual and sound-evoked memory recall and that constitutive over-activation of the receptor's intracellular tyrosine kinase domain results in enhanced memory. Loss of EphB2 expression does not affect the number of neurons activated following encoding, although a reduction of neurons activated after the sound-cued retrieval test was detected in the auditory cortex and hippocampal CA1. Further, spine density and maturation was reduced in the auditory cortex of mutants especially in the neurons that were dual-activated during both encoding and retrieval. Our data demonstrates that trans-synaptic ephrin-B-EphB2 interactions and forward signaling facilitate neural activation and structural plasticity in learning-associated neurons involved in the generation of memories.


Asunto(s)
Percepción Auditiva/fisiología , Corteza Cerebral/metabolismo , Espinas Dendríticas/metabolismo , Aprendizaje/fisiología , Receptor EphB2/metabolismo , Animales , Efrinas/metabolismo , Miedo/fisiología , Femenino , Masculino , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Receptor EphB1/genética , Receptor EphB1/metabolismo , Receptor EphB2/genética , Transducción de Señal
7.
J Cell Biol ; 217(11): 4007-4024, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185604

RESUMEN

Neuronal connections are initiated by axon targeting to form synapses. However, how the maturation of axon terminals is modulated through interacting with postsynaptic elements remains elusive. In this study, we find that ligand of Numb protein X 1 (Lnx1), a postsynaptic PDZ protein expressed in hippocampal CA3 pyramidal neurons, is essential for mossy fiber (MF) axon targeting during the postnatal period. Lnx1 deletion causes defective synaptic arrangement that leads to aberrant presynaptic terminals. We further identify EphB receptors as novel Lnx1-binding proteins to form a multiprotein complex that is stabilized on the CA3 neuron membrane through preventing proteasome activity. EphB1 and EphB2 are independently required to transduce distinct signals controlling MF pruning and targeting for precise DG-CA3 synapse formation. Furthermore, constitutively active EphB2 kinase rescues structure of the wired MF terminals in Lnx1 mutant mice. Our data thus define a retrograde trans-synaptic regulation required for integration of post- and presynaptic structure that participates in building hippocampal neural circuits during the adolescence period.


Asunto(s)
Axones/metabolismo , Región CA3 Hipocampal/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Células Piramidales/metabolismo , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Receptor EphB1/genética , Receptor EphB1/metabolismo , Receptor EphB2/genética , Receptor EphB2/metabolismo , Sinapsis/genética , Ubiquitina-Proteína Ligasas/genética
8.
Eur J Neurosci ; 48(2): 1803-1817, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29904965

RESUMEN

To explore roles for ephrin-B/EphB signaling in cortical interneurons, we previously generated ephrin-B (Efnb1/b2/b3) conditional triple mutant (TMlz ) mice using a Dlx1/2.Cre inhibitory neuron driver and green fluorescent protein (GFP) reporters for the two main inhibitory interneuron groups distinguished by expression of either glutamic acid decarboxylase 1 (GAD1; GAD67-GFP) or 2 (GAD2; GAD65-GFP). This work showed a general involvement of ephrin-B in migration and population of interneurons into the embryonic neocortex. We now determined whether specific interneurons are selectively affected in the adult brains of TMlz .Cre mice by immunostaining with antibodies that identify the different subtypes. The results indicate that GAD67-GFP-expressing interneurons that also express parvalbumin (PV), calretinin (CR) and, to a lesser extent, somatostatin (SST) and Reelin (Rln) were significantly reduced in the cortex and hippocampal CA1 region in TMlz .Cre mutant mice. Neuropeptide Y (NPY) interneurons that also express GAD67-GFP were reduced in the hippocampal CA1 region, but much less so in the cortex, although these cells exhibited abnormal cortical layering. In GAD65-GFP-expressing interneurons, CR subtypes were reduced in both cortex and hippocampal CA1 region, whereas Rln interneurons were reduced exclusively in hippocampus, and the numbers of NPY and vasoactive intestinal polypeptide (VIP) subtypes appeared normal. PV and CR subtype interneurons in TMlz .Cre mice also exhibited reductions in their perisomatic area, suggesting abnormalities in dendritic/axonal complexity. Altogether, our data indicate that ephrin-B expression within forebrain interneurons is required in specific subtypes for their normal population, cortical layering and elaboration of cell processes.


Asunto(s)
Región CA1 Hipocampal/citología , Movimiento Celular/fisiología , Efrinas/fisiología , Neuronas GABAérgicas , Interneuronas , Corteza Somatosensorial/citología , Animales , Recuento de Células , Efrinas/deficiencia , Femenino , Neuronas GABAérgicas/clasificación , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteína Reelina
9.
Sci Rep ; 8(1): 2532, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416088

RESUMEN

Hepatic fibrosis is the result of an excessive wound-healing response subsequent to chronic liver injury. A feature of liver fibrogenesis is the secretion and deposition of extracellular matrix proteins by activated hepatic stellate cells (HSCs). Here we report that upregulation of EphB2 is a prominent feature of two mouse models of hepatic fibrosis and also observed in humans with liver cirrhosis. EphB2 is upregulated and activated in mouse HSCs following chronic carbon tetrachloride (CCl4) exposure. Moreover, we show that EphB2 deficiency attenuates liver fibrosis and inflammation and this is correlated with an overall reduction in pro-fibrotic markers, inflammatory chemokines and cytokines. In an in vitro system of HSCs activation we observed an impaired proliferation and sub-optimal differentiation into fibrogenic myofibroblasts of HSCs isolated from EphB2-/- mice compared to HSCs isolated from wild type mice. This supports the hypothesis that EphB2 promotes liver fibrosis partly via activation of HSCs. Cellular apoptosis which is generally observed during the regression of liver fibrogenesis was increased in liver specimens of CCl4-treated EphB2-/- mice compared to littermate controls. This data is suggestive of an active repair/regeneration system in the absence of EphB2. Altogether, our data validate this novel pro-fibrotic function of EphB2 receptor tyrosine kinase.


Asunto(s)
Células Estrelladas Hepáticas/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Miofibroblastos/patología , Receptor EphB2/genética , Animales , Tetracloruro de Carbono/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo
10.
Dev Biol ; 431(2): 179-193, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947178

RESUMEN

While several studies indicate the importance of ephrin-B/EphB bidirectional signaling in excitatory neurons, potential roles for these molecules in inhibitory neurons are largely unknown. We identify here an autonomous receptor-like role for ephrin-B reverse signaling in the tangential migration of interneurons into the neocortex using ephrin-B (EfnB1/B2/B3) conditional triple mutant (TMlz) mice and a forebrain inhibitory neuron specific Cre driver. Inhibitory neuron deletion of the three EfnB genes leads to reduced interneuron migration, abnormal cortical excitability, and lethal audiogenic seizures. Truncated and intracellular point mutations confirm the importance of ephrin-B reverse signaling in interneuron migration and cortical excitability. A non-autonomous ligand-like role was also identified for ephrin-B2 that is expressed in neocortical radial glial cells and required for proper tangential migration of GAD65-positive interneurons. Our studies thus define both receptor-like and ligand-like roles for the ephrin-B molecules in controlling the migration of interneurons as they populate the neocortex and help establish excitatory/inhibitory (E/I) homeostasis.


Asunto(s)
Movimiento Celular , Efrinas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Animales , Femenino , Eliminación de Gen , Ligandos , Ratones , Modelos Biológicos , Mutación/genética , Neocórtex/citología , Neocórtex/metabolismo , Inhibición Neural , Prosencéfalo/citología , Prosencéfalo/metabolismo , Seudópodos/metabolismo
11.
12.
J Clin Invest ; 126(12): 4554-4568, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27820703

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow. Stress signals from cancer and other conditions promote HSPC mobilization into circulation and subsequent homing to tissue microenvironments. HSPC infiltration into tissue microenvironments can influence disease progression; notably, in cancer, HSPCs encourage tumor growth. Here we have uncovered a mutually exclusive distribution of EPHB4 receptors in bone marrow sinusoids and ephrin B2 ligands in hematopoietic cells. We determined that signaling interactions between EPHB4 and ephrin B2 control HSPC mobilization from the bone marrow. In mice, blockade of the EPHB4/ephrin B2 signaling pathway reduced mobilization of HSPCs and other myeloid cells to the circulation. EPHB4/ephrin B2 blockade also reduced HSPC infiltration into tumors as well as tumor progression in murine models of melanoma and mammary cancer. These results identify EPHB4/ephrin B2 signaling as critical to HSPC mobilization from bone marrow and provide a potential strategy for reducing cancer progression by targeting the bone marrow.


Asunto(s)
Médula Ósea/metabolismo , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/metabolismo , Receptor EphB4/metabolismo , Transducción de Señal/fisiología , Nicho de Células Madre/fisiología , Animales , Línea Celular , Efrina-B2/genética , Efrina-B2/metabolismo , Ratones , Receptor EphB4/genética
13.
J Neurosci ; 36(39): 10151-62, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683910

RESUMEN

UNLABELLED: The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT: Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Glutamatos/metabolismo , Instinto , Neurogénesis/fisiología , Neuronas/fisiología , Receptor EphB2/metabolismo , Envejecimiento/fisiología , Animales , Mecanismos de Defensa , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal/fisiología
14.
Exp Cell Res ; 348(1): 10-22, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27565439

RESUMEN

Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells.


Asunto(s)
Receptores de la Familia Eph/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Efrina-B1/metabolismo , Efrina-B2/metabolismo , Humanos , Intestinos/citología , Cinética , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteolisis , Transducción de Señal , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo
15.
Dev Neurosci ; 38(2): 124-38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27035151

RESUMEN

The innervation of taste buds is an excellent model system for studying the guidance of axons during targeting because of their discrete nature and the high fidelity of innervation. The pregustatory epithelium of fungiform papillae is known to secrete diffusible axon guidance cues such as BDNF and Sema3A that attract and repel, respectively, geniculate ganglion axons during targeting, but diffusible factors alone are unlikely to explain how taste axon terminals are restricted to their territories within the taste bud. Nondiffusible cell surface proteins such as Ephs and ephrins can act as receptors and/or ligands for one another and are known to control axon terminal positioning in several parts of the nervous system, but they have not been studied in the gustatory system. We report that ephrin-B2 linked ß-galactosidase staining and immunostaining was present along the dorsal epithelium of the mouse tongue as early as embryonic day 15.5 (E15.5), but was not detected at E14.5, when axons first enter the epithelium. Ephrin-B1 immunolabeling was barely detected in the epithelium and found at a somewhat higher concentration in the mesenchyme subjacent to the epithelium. EphB1 and EphB2 were detected in lingual sensory afferents in vivo and geniculate neurites in vitro. Ephrin-B1 and ephrin-B2 were similarly effective in repelling or suppressing outgrowth by geniculate neurites in vitro. These in vitro effects were independent of the neurotrophin used to promote outgrowth, but were reduced by elevated levels of laminin. In vivo, mice null for EphB1 and EphB2 exhibited decreased gustatory innervation of fungiform papillae. These data provide evidence that ephrin-B forward signaling is necessary for normal gustatory innervation of the mammalian tongue.


Asunto(s)
Efrinas/metabolismo , Ganglio Geniculado/metabolismo , Transducción de Señal , Papilas Gustativas/metabolismo , Lengua/inervación , Animales , Axones/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epitelio/inervación , Epitelio/metabolismo , Ratones , Neuritas/metabolismo , Ratas , Lengua/metabolismo
16.
Nat Commun ; 7: 11096, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27008987

RESUMEN

Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Axones/metabolismo , Efrina-B3/metabolismo , Miedo/fisiología , Instinto , Neurogénesis , Animales , Núcleo Celular/metabolismo , Efrina-B3/genética , Ratones , Mutación/genética , Sinapsis/metabolismo , Factores de Tiempo
17.
Dev Neurobiol ; 76(4): 405-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26148571

RESUMEN

The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.


Asunto(s)
Comisura Anterior Cerebral/embriología , Comisura Anterior Cerebral/metabolismo , Cuerpo Calloso/embriología , Cuerpo Calloso/metabolismo , Receptor EphB1/metabolismo , Receptor EphB2/metabolismo , Animales , Comisura Anterior Cerebral/citología , Axones/metabolismo , Movimiento Celular/fisiología , Cuerpo Calloso/citología , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Inmunohistoquímica , Espacio Intracelular , Ratones Transgénicos , Técnicas de Trazados de Vías Neuroanatómicas , Dominios Proteicos , Receptor EphB1/genética , Receptor EphB2/genética , Transducción de Señal
18.
J Neurosci ; 35(23): 8718-29, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063906

RESUMEN

In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.


Asunto(s)
Movimiento Celular/genética , Cuerpo Estriado/citología , Interneuronas/fisiología , Vías Nerviosas/fisiología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Corteza Cerebelosa/citología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteínas Nucleares/genética , Técnicas de Cultivo de Órganos , Receptor EphB1/genética , Receptor EphB1/metabolismo , Receptor EphB3/genética , Receptor EphB3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transducción de Señal , Telencéfalo/citología , Telencéfalo/embriología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética
19.
Oncotarget ; 6(11): 8929-46, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25879388

RESUMEN

The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased ß1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.


Asunto(s)
Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Proteínas de Neoplasias/fisiología , Receptor EphB1/fisiología , Animales , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Neoplasias Cerebelosas/enzimología , Neoplasias Cerebelosas/genética , Supervivencia sin Enfermedad , Fase G1 , Humanos , Integrina beta1/biosíntesis , Integrina beta1/genética , Meduloblastoma/enzimología , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Tolerancia a Radiación , Receptor EphB1/deficiencia , Receptor EphB1/genética
20.
Nat Commun ; 6: 6625, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25865237

RESUMEN

Bidirectional signalling is regarded as a notable hallmark of the Eph-ephrin signalling system: Eph-dependent forward signalling in Eph-expressing cells and ephrin-dependent reverse signalling in Ephrin-expressing cells. The notion of ephrin-dependent reverse signalling derives from genetic experiments utilizing mice carrying mutations in the intracellular region of ephrinBs. Here we show that EphB4-dependent forward signalling regulates lymphatic valve development, a process previously thought to be regulated by ephrinB2-dependent reverse signalling. We develop antibodies that selectively target EphB4 and ephrinB2. We find that mice bearing genetically altered cytoplasmic region of ephrinB2 have significantly altered EphB4-dependent forward signalling. Selective inhibition of EphB4 using a functional blocking antibody results in defective lymphatic valve development. Furthermore, a chemical genetic approach is used to unequivocally show that the kinase activity of EphB4 is essential for lymphatic valve development.


Asunto(s)
Efrina-B2/genética , Regulación del Desarrollo de la Expresión Génica , Vasos Linfáticos/metabolismo , Fosfotransferasas/genética , Receptor EphB4/genética , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/química , Efrina-B2/antagonistas & inhibidores , Efrina-B2/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Vasos Linfáticos/anatomía & histología , Ratones , Datos de Secuencia Molecular , Morfogénesis/genética , Células 3T3 NIH , Biblioteca de Péptidos , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/metabolismo , Ingeniería de Proteínas , Receptor EphB4/antagonistas & inhibidores , Receptor EphB4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA