Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598269

RESUMEN

Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.


Asunto(s)
Listeria monocytogenes , Defectos del Tubo Neural , Humanos , Animales , Muerte Celular , Estro , Alimentos , Proteínas HSP70 de Choque Térmico
2.
EMBO J ; 43(7): 1273-1300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448672

RESUMEN

MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Péptidos/metabolismo , Daño del ADN
3.
Nat Struct Mol Biol ; 31(3): 476-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38297086

RESUMEN

Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.


Asunto(s)
Proteínas de Drosophila , Cinesinas , Animales , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Tropomiosina/metabolismo , Drosophila/genética , Microtúbulos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37989319

RESUMEN

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Asunto(s)
Proteínas de Drosophila , ARN Helicasas , Animales , Humanos , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis , ARN/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/genética , Factores de Transcripción/metabolismo
5.
J Biol Chem ; 299(11): 105336, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37827289

RESUMEN

Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a ß-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.

6.
Nucleic Acids Res ; 51(4): 1895-1913, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688322

RESUMEN

RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.


Asunto(s)
Proteínas de Unión a Poli(A) , ARN , Respuesta al Choque por Frío , Proteínas de Unión al ADN/genética , Poli A/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , ARN/química
7.
J Struct Biol ; 214(4): 107923, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36410652

RESUMEN

Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.


Asunto(s)
Factor de von Willebrand , Factor de von Willebrand/genética
8.
J Am Chem Soc ; 144(49): 22493-22504, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36413626

RESUMEN

Pancreatic cancer has the lowest survival rate of all common cancers due to late diagnosis and limited treatment options. Serine hydrolases are known to mediate cancer progression and metastasis through initiation of signaling cascades and cleavage of extracellular matrix proteins, and the kallikrein-related peptidase (KLK) family of secreted serine proteases have emerging roles in pancreatic ductal adenocarcinoma (PDAC). However, the lack of reliable activity-based probes (ABPs) to profile KLK activity has hindered progress in validation of these enzymes as potential targets or biomarkers. Here, we developed potent and selective ABPs for KLK6 by using a positional scanning combinatorial substrate library and characterized their binding mode and interactions by X-ray crystallography. The optimized KLK6 probe IMP-2352 (kobs/I = 11,000 M-1 s-1) enabled selective detection of KLK6 activity in a variety of PDAC cell lines, and we observed that KLK6 inhibition reduced the invasiveness of PDAC cells that secrete active KLK6. KLK6 inhibitors were combined with N-terminomics to identify potential secreted protein substrates of KLK6 in PDAC cells, providing insights into KLK6-mediated invasion pathways. These novel KLK6 ABPs offer a toolset to validate KLK6 and associated signaling partners as targets or biomarkers across a range of diseases.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Calicreínas/metabolismo , Invasividad Neoplásica , Neoplasias Pancreáticas
9.
RSC Adv ; 12(41): 26989-26993, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36320846

RESUMEN

Scalable asymmetric syntheses of two kallikrein-related protease 6 (KLK6) inhibitors are reported. The inhibitors are assembled by linking enantiomerically enriched fragments via amide bond formation, followed by conversion of a cyano group to an amidine. One fragment, an amine, was prepared using the Ellman auxiliary, and a lack of clarity in the literature regarding the stereochemical outcome of this reaction was solved via X-ray crystallographic analysis of two derivatives. Complexes of the inhibitors bound to human KLK6 were solved by X-ray crystallography, revealing the binding poses.

10.
RSC Adv ; 12(44): 28677, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36321863

RESUMEN

[This corrects the article DOI: 10.1039/D2RA04670A.].

11.
Mol Cell ; 82(14): 2666-2680.e11, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35709751

RESUMEN

Differentiating stem cells must coordinate their metabolism and fate trajectories. Here, we report that the catalytic activity of the glycolytic enzyme Enolase 1 (ENO1) is directly regulated by RNAs leading to metabolic rewiring in mouse embryonic stem cells (mESCs). We identify RNA ligands that specifically inhibit ENO1's enzymatic activity in vitro and diminish glycolysis in cultured human cells and mESCs. Pharmacological inhibition or RNAi-mediated depletion of the protein deacetylase SIRT2 increases ENO1's acetylation and enhances its RNA binding. Similarly, induction of mESC differentiation leads to increased ENO1 acetylation, enhanced RNA binding, and inhibition of glycolysis. Stem cells expressing mutant forms of ENO1 that escape or hyper-activate this regulation display impaired germ layer differentiation. Our findings uncover acetylation-driven riboregulation of ENO1 as a physiological mechanism of glycolytic control and of the regulation of stem cell differentiation. Riboregulation may represent a more widespread principle of biological control.


Asunto(s)
Glucólisis , Fosfopiruvato Hidratasa , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Glucólisis/fisiología , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , ARN/metabolismo
12.
RNA ; 28(5): 742-755, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35210358

RESUMEN

Cellular processes can be regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational mechanisms. We have recently shown that the small, noncoding vault RNA1-1 negatively riboregulates p62 oligomerization in selective autophagy through direct interaction with the autophagic receptor. This function is highly specific for this Pol III transcript, but the determinants of this specificity and a mechanistic explanation of how vault RNA1-1 inhibits p62 oligomerization are lacking. Here, we combine biochemical and functional experiments to answer these questions. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and we identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within vault RNA1-1 that is required for the specific interaction with p62. Overall, our data provide molecular insight into how a small RNA riboregulates protein-protein interactions critical to the activation of specific autophagy.


Asunto(s)
Arginina , Lisina , Autofagia/genética , ARN Bacteriano , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
13.
Thromb Haemost ; 122(2): 226-239, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33385180

RESUMEN

The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target.


Asunto(s)
Mutación con Ganancia de Función , Variación Genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Factor de von Willebrand/genética , Mutación con Ganancia de Función/genética , Hemostasis , Humanos , Agregación Plaquetaria , Dominios Proteicos/genética , Enfermedades de von Willebrand/sangre , Factor de von Willebrand/metabolismo
14.
Nature ; 597(7877): 533-538, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497420

RESUMEN

Bacteria in the gut can modulate the availability and efficacy of therapeutic drugs. However, the systematic mapping of the interactions between drugs and bacteria has only started recently1 and the main underlying mechanism proposed is the chemical transformation of drugs by microorganisms (biotransformation). Here we investigated the depletion of 15 structurally diverse drugs by 25 representative strains of gut bacteria. This revealed 70 bacteria-drug interactions, 29 of which had not to our knowledge been reported before. Over half of the new interactions can be ascribed to bioaccumulation; that is, bacteria storing the drug intracellularly without chemically modifying it, and in most cases without the growth of the bacteria being affected. As a case in point, we studied the molecular basis of bioaccumulation of the widely used antidepressant duloxetine by using click chemistry, thermal proteome profiling and metabolomics. We find that duloxetine binds to several metabolic enzymes and changes the metabolite secretion of the respective bacteria. When tested in a defined microbial community of accumulators and non-accumulators, duloxetine markedly altered the composition of the community through metabolic cross-feeding. We further validated our findings in an animal model, showing that bioaccumulating bacteria attenuate the behavioural response of Caenorhabditis elegans to duloxetine. Together, our results show that bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, probably in an individual manner.


Asunto(s)
Bacterias/metabolismo , Bioacumulación , Clorhidrato de Duloxetina/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacocinética , Caenorhabditis elegans/metabolismo , Células/metabolismo , Química Clic , Clorhidrato de Duloxetina/efectos adversos , Clorhidrato de Duloxetina/farmacocinética , Humanos , Metabolómica , Modelos Animales , Proteómica , Reproducibilidad de los Resultados
15.
Genes Dev ; 35(17-18): 1304-1323, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34413138

RESUMEN

Piwi-interacting RNAs (piRNAs) constitute a class of small RNAs that bind PIWI proteins and are essential to repress transposable elements in the animal germline, thereby promoting genome stability and maintaining fertility. C. elegans piRNAs (21U RNAs) are transcribed individually from minigenes as precursors that require 5' and 3' processing. This process depends on the PETISCO complex, consisting of four proteins: IFE-3, TOFU-6, PID-3, and ERH-2. We used biochemical and structural biology approaches to characterize the PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. These two proteins define different PETISCO functions: PID-1 governs 21U processing, whereas TOST-1 links PETISCO to an unknown process essential for early embryogenesis. Here, we show that PETISCO forms an octameric assembly with each subunit present in two copies. Determination of structures of the TOFU-6/PID-3 and PID-3/ERH-2 subcomplexes, supported by in vivo studies of subunit interaction mutants, allows us to propose a model for the formation of the TOFU-6/PID-3/ERH-2 core complex and its functionality in germ cells and early embryos. Using NMR spectroscopy, we demonstrate that TOST-1 and PID-1 bind to a common surface on ERH-2, located opposite its PID-3 binding site, explaining how PETISCO can mediate different cellular roles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Elementos Transponibles de ADN , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
16.
RNA ; 27(10): 1173-1185, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34215685

RESUMEN

RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Asociadas a la Distrofina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Tiorredoxinas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Clonación Molecular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Asociadas a la Distrofina/química , Proteínas Asociadas a la Distrofina/genética , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Ovario/citología , Ovario/metabolismo , Poli U/química , Poli U/genética , Poli U/metabolismo , Unión Proteica , ARN/química , ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/química , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
17.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329466

RESUMEN

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/ultraestructura , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/ultraestructura , Proteínas de Unión al ARN/ultraestructura , Dispersión del Ángulo Pequeño , Factores de Transcripción/ultraestructura , Difracción de Rayos X
18.
Genes Dev ; 35(13-14): 1055-1070, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34140353

RESUMEN

The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Compensación de Dosificación (Genética) , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromosomas Sexuales/metabolismo , Factores de Transcripción/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
19.
Genes Dev ; 35(13-14): 976-991, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34140355

RESUMEN

Kinesin-1 carries cargos including proteins, RNAs, vesicles, and pathogens over long distances within cells. The mechanochemical cycle of kinesins is well described, but how they establish cargo specificity is not fully understood. Transport of oskar mRNA to the posterior pole of the Drosophila oocyte is mediated by Drosophila kinesin-1, also called kinesin heavy chain (Khc), and a putative cargo adaptor, the atypical tropomyosin, aTm1. How the proteins cooperate in mRNA transport is unknown. Here, we present the high-resolution crystal structure of a Khc-aTm1 complex. The proteins form a tripartite coiled coil comprising two in-register Khc chains and one aTm1 chain, in antiparallel orientation. We show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, and mutational analysis confirms the importance of this interaction for mRNA transport in vivo. Furthermore, we demonstrate that Khc binds RNA directly and that it does so via its alternative cargo binding domain, which forms a positively charged joint surface with aTm1, as well as through its adjacent auxiliary microtubule binding domain. Finally, we show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors.


Asunto(s)
Proteínas de Drosophila , Cinesinas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Tropomiosina/metabolismo
20.
Mol Microbiol ; 115(2): 175-190, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32979851

RESUMEN

Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.


Asunto(s)
Lisina/análogos & derivados , Secuencia de Aminoácidos/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de Choque Térmico/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA