Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 128(11): 2021-32, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25918123

RESUMEN

The plasma membrane, trans-Golgi network and endosomal system of eukaryotic cells are populated with flippases that hydrolyze ATP to help establish asymmetric phospholipid distributions across the bilayer. Upholding phospholipid asymmetry is vital to a host of cellular processes, including membrane homeostasis, vesicle biogenesis, cell signaling, morphogenesis and migration. Consequently, defining the identity of flippases and their biological impact has been the subject of intense investigations. Recent work has revealed a remarkable degree of kinship between flippases and cation pumps. In this Commentary, we review emerging insights into how flippases work, how their activity is controlled according to cellular demands, and how disrupting flippase activity causes system failure of membrane function, culminating in membrane trafficking defects, aberrant signaling and disease.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Animales , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos , Red trans-Golgi/metabolismo
2.
J Biol Chem ; 287(36): 30529-40, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22791719

RESUMEN

Type 4 P-type ATPases (P(4)-ATPases) catalyze phospholipid transport to generate phospholipid asymmetry across membranes of late secretory and endocytic compartments, but their kinship to cation-transporting P-type transporters raised doubts about whether P(4)-ATPases alone are sufficient to mediate flippase activity. P(4)-ATPases form heteromeric complexes with Cdc50 proteins. Studies of the enzymatic properties of purified P(4)-ATPase·Cdc50 complexes showed that catalytic activity depends on direct and specific interactions between Cdc50 subunit and transporter, whereas in vivo interaction assays suggested that the binding affinity for each other fluctuates during the transport reaction cycle. The structural determinants that govern this dynamic association remain to be established. Using domain swapping, site-directed, and random mutagenesis approaches, we here show that residues throughout the subunit contribute to forming the heterodimer. Moreover, we find that a precise conformation of the large ectodomain of Cdc50 proteins is crucial for the specificity and functionality to transporter/subunit interactions. We also identified two highly conserved disulfide bridges in the Cdc50 ectodomain. Functional analysis of cysteine mutants that disrupt these disulfide bridges revealed an inverse relationship between subunit binding and P(4)-ATPase-catalyzed phospholipid transport. Collectively, our data indicate that a dynamic association between subunit and transporter is crucial for the transport reaction cycle of the heterodimer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Multimerización de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Transporte Biológico Activo/fisiología , Complejos Multiproteicos/genética , Mutación , Mapeo Peptídico/métodos , Proteínas de Transferencia de Fosfolípidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 287(16): 13249-61, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22351780

RESUMEN

Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfato/metabolismo , Ácido Aspártico/metabolismo , ATPasas Transportadoras de Calcio/genética , Detergentes/farmacología , Fluoruros/farmacología , Radioisótopos de Fósforo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Plásmidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Vanadatos/farmacología
4.
J Biol Chem ; 285(52): 40562-72, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20961850

RESUMEN

Members of the P(4) subfamily of P-type ATPases catalyze phospholipid transport and create membrane lipid asymmetry in late secretory and endocytic compartments. P-type ATPases usually pump small cations and the transport mechanism involved appears conserved throughout the family. How this mechanism is adapted to flip phospholipids remains to be established. P(4)-ATPases form heteromeric complexes with CDC50 proteins. Dissociation of the yeast P(4)-ATPase Drs2p from its binding partner Cdc50p disrupts catalytic activity (Lenoir, G., Williamson, P., Puts, C. F., and Holthuis, J. C. (2009) J. Biol. Chem. 284, 17956-17967), suggesting that CDC50 subunits play an intimate role in the mechanism of transport by P(4)-ATPases. The human genome encodes 14 P(4)-ATPases while only three human CDC50 homologues have been identified. This implies that each human CDC50 protein interacts with multiple P(4)-ATPases or, alternatively, that some human P(4)-ATPases function without a CDC50 binding partner. Here we show that human CDC50 proteins each bind multiple class-1 P(4)-ATPases, and that in all cases examined, association with a CDC50 subunit is required for P(4)-ATPase export from the ER. Moreover, we find that phosphorylation of the catalytically important Asp residue in human P(4)-ATPases ATP8B1 and ATP8B2 is critically dependent on their CDC50 subunit. These results indicate that CDC50 proteins are integral part of the P(4)-ATPase flippase machinery.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfatasas/genética , Animales , Células CACO-2 , Retículo Endoplásmico/genética , Estudio de Asociación del Genoma Completo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Fosforilación/fisiología , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...