Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccine ; 40(43): 6255-6270, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36137904

RESUMEN

Swine influenza A virus (swIAV) infections in pig populations cause considerable morbidity and economic losses. Frequent reverse zoonotic incursions of human IAV boost reassortment opportunities with authentic porcine and avian-like IAV in swine herds potentially enhancing zoonotic and even pre-pandemic potential. Vaccination using adjuvanted inactivated full virus vaccines is frequently used in attempting control of swIAV infections. Accelerated antigenic drift of swIAV in large swine holdings and interference of maternal antibodies with vaccine in piglets can compromise these efforts. Potentially more efficacious modified live-attenuated vaccines (MLVs) bear the risk of reversion of MLV to virulence. Here we evaluated new MLV candidates based on cold-passaged swIAV or on reassortment-incompetent bat-IAV-swIAV chimeric viruses. Serial cold-passaging of various swIAV subtypes did not yield unambiguously temperature-sensitive mutants although safety studies in mice and pigs suggested some degree of attenuation. Chimeric bat-swIAV expressing the hemagglutinin and neuraminidase of an avian-like H1N1, in contrast, proved to be safe in mice and pigs, and a single nasal inoculation induced protective immunity against homologous challenge in pigs. Reassortant-incompetent chimeric bat-swIAV vaccines could aid in reducing the amount of swIAV circulating in pig populations, thereby increasing animal welfare, limiting economic losses and lowering the risk of zoonotic swIAV transmission.


Asunto(s)
Quirópteros , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Anticuerpos Antivirales , Hemaglutininas , Humanos , Gripe Humana/prevención & control , Ratones , Neuraminidasa/genética , Virus Reordenados/genética , Porcinos , Vacunas Atenuadas , Vacunas de Productos Inactivados
2.
Cell Host Microbe ; 28(4): 614-627.e6, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32721380

RESUMEN

Swine influenza A viruses (swIAVs) can play a crucial role in the generation of new human pandemic viruses. In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism. Several viral isolates were resistant to the human antiviral MxA protein, a prerequisite for zoonotic transmission and stable introduction into human populations. A pronounced antigenic variation was noted in swIAV, and several H1pdm lineages antigenically distinct from current seasonal human H1pdm co-circulate in swine. Thus, European swine populations represent reservoirs for emerging IAV strains with zoonotic and, possibly, pre-pandemic potential.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Aerosoles , Animales , Variación Antigénica , Europa (Continente)/epidemiología , Hurones , Variación Genética , Genotipo , Humanos , Incidencia , Vacunas contra la Influenza , Gripe Humana/virología , Neuraminidasa , Infecciones por Orthomyxoviridae/transmisión , Filogenia , Sus scrofa , Porcinos , Tropismo , Proteínas Virales , Zoonosis Virales , Virulencia
3.
Influenza Other Respir Viruses ; 13(1): 71-82, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30264926

RESUMEN

BACKGROUND: Human- or avian-to-swine transmissions have founded several autonomously circulating influenza A virus (IAV) lineages in swine populations that cause economically important respiratory disease. Little is known on other human influenza virus types, like B (IBV) and C (ICV) in European swine, and of the recently detected novel animal influenza virus type D (IDV). OBJECTIVES: Development of a cost-effective diagnostic tool for large-scale surveillance programmes targeting all four influenza virus types. METHODS: An influenza ABCD tetraplex real-time RT-PCR (RT-qPCR) was developed in the frame of this study. A selection of reference virus strains and more than 4000 porcine samples from a passive IAV surveillance programme in European swine with acute respiratory disease were examined. RESULTS: Two IBV, a single IDV but no ICV infections were identified by tetraplex RT-qPCR. IBV and IDV results were confirmed by conventional RT-PCR and partial sequence analysis. CONCLUSIONS: The tetraplex RT-qPCR proved fit for purpose as a sensitive, specific and high-throughput tool to study influenza virus transmission at the human-animal interface. Complementing close-meshed active virological and serological surveillance is required to better understand the true incidence and prevalence of influenza virus type B, C and D infections in swine.


Asunto(s)
Monitoreo Epidemiológico/veterinaria , Ensayos Analíticos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Orthomyxoviridae/aislamiento & purificación , Animales , Cartilla de ADN/genética , Europa (Continente) , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gammainfluenzavirus/aislamiento & purificación , Infecciones por Orthomyxoviridae/diagnóstico , ARN Viral/genética , Sensibilidad y Especificidad , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología , Thogotovirus/aislamiento & purificación
4.
J Virol ; 92(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30258006

RESUMEN

The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a "mixing vessel" for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/epidemiología , Enfermedades de los Porcinos/virología , Secuenciación Completa del Genoma/métodos , Animales , Evolución Molecular , Francia/epidemiología , Hemaglutininas/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/virología , Pandemias , Filogenia , Vigilancia de la Población , Análisis Espacio-Temporal , Porcinos , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética , Secuenciación Completa del Genoma/veterinaria
5.
Influenza Other Respir Viruses ; 10(6): 504-517, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27397600

RESUMEN

BACKGROUND: A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. OBJECTIVES: Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost-effective large-scale analysis. METHODS: New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. RESULTS: A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages "av" (European avian-derived), "hu" (European human-derived) and "pdm" (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage "pdm" is differentiated. An RT-PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT-qPCR subtyping. CONCLUSIONS: These new multiplex RT-qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe.


Asunto(s)
Hemaglutininas/genética , Virus de la Influenza A/clasificación , Gripe Humana/virología , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Aves/virología , Cartilla de ADN/genética , Monitoreo Epidemiológico/veterinaria , Europa (Continente)/epidemiología , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/transmisión , Reacción en Cadena de la Polimerasa Multiplex , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/diagnóstico
6.
Sci Rep ; 6: 27211, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27256976

RESUMEN

Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established.


Asunto(s)
Virus de la Influenza A/clasificación , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Aves/virología , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Gripe Aviar/diagnóstico , Células de Riñón Canino Madin Darby , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/diagnóstico , Sensibilidad y Especificidad , Especificidad de la Especie , Porcinos/virología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...