RESUMEN
The genus Macadamia in the Proteaceae family includes four species native to Australia. Two of the four species, M. integrifolia and M. tetraphylla, have recently been utilized to generate domesticated macadamia varieties, grown for their edible nuts. To explore diversity in macadamia genetic resources, a total of 166 wild genotypes, representing all four species, were sequenced. The four species were clearly distinguished as four separate clades in a phylogenetic analysis of the nuclear genome (based upon concatenated nuclear gene CDS and SNPs). The two larger species (M. integrifolia and M. tetraphylla) formed a clade, that had diverged from a clade including the smaller species (M. ternifolia and M. jansenii). The greatest diversity in nuclear and chloroplast genomes was found in the more widely distributed M. integrifolia while the rare M. jansenii showed little diversity. The chloroplast phylogeny revealed a much more complex evolutionary history. Multiple chloroplast capture events have resulted in chloroplast genome clades, including genotypes from different species. This suggests extensive reticulate evolution in Macadamia despite the emergence of the four distinct species that are supported by the analysis of their nuclear genomes. The chloroplast genomes showed strong associations with geographical distribution reflecting limited maternal gene movement in these species that have large seeds. The nuclear genomes showed lesser geographical differences, probably reflecting the longer distance pollen movement. This improved understanding of the distribution of diversity in Macadamia will aid in the conservation of these rare species now found in highly fragmented rainforest remnants.
RESUMEN
Australian wild limes occur in highly diverse range of environments and are a unique genetic resource within the genus Citrus. Here we compare the haplotype-resolved genome assemblies of six Australian native limes, including four new assemblies generated using PacBio HiFi and Hi-C sequencing data. The size of the genomes was between 315 and 391 Mb with contig N50s from 29.5 to 35 Mb. Gene completeness of the assemblies was estimated to be from 98.4 to 99.3% and the annotations from 97.7 to 98.9% based upon BUSCO, confirming the high contiguity and completeness of the assembled genomes. High collinearity was observed among the genomes and the two haplotype assemblies for each species. Gene duplication and evolutionary analysis demonstrated that the Australian citrus have undergone only one ancient whole-genome triplication event during evolution. The highest number of species-specific and expanded gene families were found in C. glauca and they were primarily enriched in purine, thiamine metabolism, amino acids and aromatic amino acids metabolism which might help C. glauca to mitigate drought, salinity, and pathogen attacks in the drier environments in which this species is found. Unique genes related to terpene biosynthesis, glutathione metabolism, and toll-like receptors in C. australasica, and starch and sucrose metabolism genes in both C. australis and C. australasica might be important candidate genes for HLB tolerance in these species. Expanded gene families were not lineage specific, however, a greater number of genes related to plant-pathogen interactions, predominantly disease resistant protein, was found in C. australasica and C. australis.
Asunto(s)
Citrus , Genoma de Planta , Genoma de Planta/genética , Australia , Citrus/genética , Filogenia , Anotación de Secuencia Molecular , Haplotipos , Duplicación de Gen , Evolución Molecular , Especificidad de la EspecieRESUMEN
BACKGROUND: Jasminum sambac, a widely recognized ornamental plant prized for its aromatic blossoms, exhibits three flora phenotypes: single-petal ("SP"), double-petal ("DP"), and multi-petal ("MP"). The lack of detailed characterization and comparison of J. sambac mitochondrial genomes (mitogenomes) hinders the exploration of the genetic and structural diversity underlying the varying floral phenotypes in jasmine accessions. RESULTS: Here, we de novo assembled three mitogenomes of typical phenotypes of J. sambac, "SP", "DP", and "MP-hutou" ("HT"), with PacBio reads and the "HT" chloroplast (cp) genome with Illumina reads, and verified them with read mapping and fluorescence in situ hybridization (FISH). The three mitogenomes present divergent sub-genomic conformations, with two, two, and four autonomous circular chromosomes ranging in size from 35.7 kb to 405.3 kb. Each mitogenome contained 58 unique genes. Ribosome binding sites with conserved AAGAAx/AxAAAG motifs were detected upstream of uncanonical start codons TTG, CTG and GTG. The three mitogenomes were similar in genomic content but divergent in structure. The structural variations were mainly attributed to recombination mediated by a large (~ 5 kb) forward repeat pair and several short repeats. The three jasmine cp. genomes showed a well-conserved structure, apart from a 19.9 kb inversion in "HT". We identified a 14.3 kb "HT"-specific insertion on Chr7 of the "HT" nuclear genome, consisting of two 7 kb chloroplast-derived fragments with two intact ndhH and rps15 genes, further validated by polymerase chain reaction (PCR). The well-resolved phylogeny suggests faster mitogenome evolution in J. sambac compared to other Oleaceae species and outlines the mitogenome evolutionary trajectories within Lamiales. All evidence supports that "DP" and "HT" evolved from "SP", with "HT" being the most recent derivative of "DP". CONCLUSION: The comprehensive characterization of jasmine organelle genomes has added to our knowledge of the structural diversity and evolutionary trajectories behind varying jasmine traits, paving the way for in-depth exploration of mechanisms and targeted genetic research.
Asunto(s)
Genoma Mitocondrial , Genoma de Planta , Jasminum , Jasminum/genética , Genoma del Cloroplasto , Cloroplastos/genética , Hibridación Fluorescente in SituRESUMEN
BACKGROUND: The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS: Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS: The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.
Asunto(s)
Compuestos de Calcio , Citrus , Citrus/genética , Resistencia a la Enfermedad/genética , Australia , Óxidos , FilogeniaRESUMEN
BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.
Asunto(s)
Evolución Molecular , Variación Genética , Genoma del Cloroplasto , Jasminum , Filogenia , Jasminum/genética , Oleaceae/genéticaRESUMEN
Improvements in long-read sequencing techniques have greatly accelerated plant genome sequencing. Current de novo assemblies are routinely achieved by assembling long-read sequence data into contigs that are assembled to chromosome level by chromatin conformation capture. We report here a chromosome-level mango genome using only PacBio high-fidelity (HiFi) long reads. HiFi reads at high coverage (204x) resulted in the assembly of 17 chromosomes, each as a single contig with telomeres at both ends. The remaining three chromosomes were represented each by two contigs, with telomeres at one end and ribosomal repeats at the other end. Analyzing contig ends allowed them to be paired and linked to generate the remaining three complete chromosomes, telomere-to-telomere but with ribosomal repeats of uncertain length. The assembled genome was 365 Mb with 100% completeness as assessed by Benchmarking Universal Single-Copy Orthologs analysis. The haplotypes assembled demonstrated extensive structural differences. This approach using very high genome coverage may be useful for assembling high-quality genomes for many other plants.
Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Mangifera , Mangifera/genética , Análisis de Secuencia de ADNRESUMEN
Plants contain a large number of phytochemical components, many of which are known as bioactive compounds and responsible for the expression of various pharmacological activities. The extract of Sonneratia caseolaris fruit collected in Vietnam was investigated for its total phenolic and total flavonoid contents using methanol solvent and different fractions of S. caseolaris fruits (hexane, ethyl acetate, n-butanol, and aqueous). GC-MS analysis was conducted to identify the bioactive chemical constituents occurring in the active extract. Further, the antibacterial activity was tested in vitro on bacterial isolates, namely Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, using the disc diffusion method on tryptic soya agar (TSA) medium. The methanol extract showed high total flavonoid (82.3 ± 0.41 mg QE/g extract) and phenolic (41.0 ± 0.34 mg GAE/g extract) content. GC-MS of the methanol extract and different fractions of S. caseolaris fruits detected 20 compounds, principally fatty alcohols, fatty acids, phenols, lipids, terpenes derivatives, and carboxylic acids derivatives. A 50 mg/ml concentration of methanol extract had the strongest antibacterial activity on E. coli, S. aureus, and B. subtilis. Furthermore, ethyl acetate, aqueous, and n-butanol fractions inhibited S. aureus and B. subtilis the most. The results of the present study suggested that the fruits of S. caseolaris are rich sources of phenolic compounds that can contribute to safe and cost-effective treatments.
Asunto(s)
Acetatos , Frutas , Polifenoles , Polifenoles/análisis , Polifenoles/farmacología , Frutas/química , Extractos Vegetales/química , Metanol/química , Cromatografía de Gases y Espectrometría de Masas , Staphylococcus aureus , Vietnam , 1-Butanol/farmacología , Escherichia coli , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/análisis , Fenoles/farmacología , Flavonoides/farmacologíaRESUMEN
2-Acetyl-1-pyrroline (2AP) is an important and major flavor aroma compound responsible for the fragrance of basmati rice, cheese, wine, and several other food products. Biosynthesis of 2AP in aromatic rice and a few other plant species is associated with a recessive Betaine aldehyde dehydrogenase 2 (BADH2) gene. However, the literature is scant on the relationship between the functional BADH2 gene and 2AP biosynthesis in prokaryotic systems. Therefore, in the present study, we aimed to explore the functionality of the BADH2 gene for 2AP biosynthesis in 2AP synthesizing rice rhizobacterial isolate Bacillus cereus DB25 isolated from the rhizosphere of basmati rice (Oryza sativa L.). Full-length BcBADH2 sequence was obtained through whole genome sequencing (WGS) and further confirmed through traditional PCR and Sanger sequencing. Then the functionality of the BcBADH2 gene was evaluated in-silico through bioinformatics analysis and protein docking studies and further experimentally validated through enzyme assay. The sequencing and bioinformatics analysis results revealed a full-length 1485 bp BcBADH2 coding sequence without any deletion or premature stop codons. Full-length BcBADH2 was found to encode a fully functional protein of 54.08 kDa with pI of 5.22 and showed the presence of the conserved amino acids responsible for enzyme activity. The docking studies confirmed a good affinity between the protein and its substrate whereas the presence of BcBADH2 enzyme activity confirmed the functionality of BADH2 enzyme in B. cereus DB25. In conclusion, the findings of the present study suggest that B. cereus DB25 is able to synthesize 2AP despite a functional BADH2 gene and there may be a different molecular mechanism responsible for 2AP biosynthesis in bacterial systems, unlike that found in aromatic rice and other eukaryotic plant species.
Asunto(s)
Bacillus cereus , Oryza , Bacillus cereus/genética , Bacillus cereus/metabolismo , Secuencia de Bases , Odorantes/análisis , Proteínas de Plantas/metabolismo , Pirroles/metabolismoRESUMEN
BACKGROUND: Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS: A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS: The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION: This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
RESUMEN
Recently, a novel purple-pericarp super-sweetcorn line, 'Tim1' (A1A1.sh2sh2) was derived from the purple-pericarp maize 'Costa Rica' (A1Sh2.A1Sh2) and white shrunken2 (sh2) super-sweetcorn 'Tims-white' (a1sh2.a1sh2), however, information regarding anthocyanin biosynthesis genes controlling purple colour and sweetness gene is lacking. Specific sequence differences in the CDS (coding DNA sequence) and promoter regions of the anthocyanin biosynthesis structural genes, anthocyanin1 (A1), purple aleurone1 (Pr1) and regulatory genes, purple plant1 (Pl1), plant colour1 (B1), coloured1 (R1), and the sweetcorn structural gene, shrunken2 (sh2) were investigated using the publicly available annotated yellow starchy maize, B73 (NAM5.0) as a reference genome. In the CDS region, the A1, Pl1 and R1 gene sequence differences of 'Tim1' and 'Costa Rica' were similar, as they control purple-pericarp pigmentation. However, the B1 gene showed similarity between the 'Tim1' and 'Tims-white' lines, which may indicate that it does not have a role in controlling pericarp colour, unlike the report of a previous study. In the case of the Pr1 gene, in contrast to 'Costa Rica', 6- and 8-bp dinucleotide (TA) repeats were observed in the promoter region of the 'Tims-white' and 'Tim1' lines, respectively, indicating the defective functionality (redder colour in 'Tim1' rather than purple in 'Costa Rica') of the recessive pr1 allele. In sweetcorn, the structural gene (sh2), sequence showed similarity between purple-sweet 'Tim1' and its white-sweet parent 'Tims-white', as both display a shrunken phenotype in their mature kernels. These findings revealed that the developed purple-sweet line is different to the reference yellow-nonsweet line in both the anthocyanin biosynthesis and sweetcorn genes.
Asunto(s)
Antocianinas , Zea mays , Antocianinas/genética , Zea mays/genética , Zea mays/metabolismo , Fenotipo , Pigmentación/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Rice is one of the most important staple plant foods that provide a major source of calories and nutrients for tackling the global hunger index especially in developing countries. In terms of nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin that can be readily incorporated into diets to help address various lifestyle diseases. However, the cultivation of pigmented rice is limited due to low productivity and unfavourable cooking qualities. With the advances in genome sequencing, molecular breeding, gene expression analysis and multi-omics approaches, various attempts have been made to explore the genetic architecture of rice grain pigmentation. In this review, we have compiled the current state of knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon the available experimental evidence. Future research areas that can help to deepen our understanding and help in harnessing the economic and health benefits of pigmented rice are also explored.
Asunto(s)
Oryza , Oryza/genética , Valor Nutritivo , Antocianinas , Mapeo Cromosómico , CulinariaRESUMEN
BACKGROUND: Dioecious plants have male and female flowers on separate plants. Jojoba is a dioecious plant that is drought-tolerant and native to arid areas. The genome sequence of male and female plants was recently reported and revealed an X and Y chromosome system, with two large male-specific insertions in the Y chromosome. RESULTS: A total of 16,923 differentially expressed genes (DEG) were identified between the flowers of the male and female jojoba plants. This represented 40% of the annotated genes in the genome. Many genes, including those responsible for plant environmental responses and those encoding transcription factors (TFs), were specific to male or female reproductive organs. Genes involved in plant hormone metabolism were also found to be associated with flower and pollen development. A total of 8938 up-regulated and 7985 down-regulated genes were identified in comparison between male and female flowers, including many novel genes specific to the jojoba plant. The most differentially expressed genes were associated with reproductive organ development. The highest number of DEG were linked with the Y chromosome in male plants. The male specific parts of the Y chromosome encoded 12 very highly expressed genes including 9 novel genes and 3 known genes associated with TFs and a plant hormone which may play an important role in flower development. CONCLUSION: Many genes, largely with unknown functions, may explain the sexual dimorphisms in jojoba plants and the differentiation of male and female flowers.
Asunto(s)
Caryophyllales , Reguladores del Crecimiento de las Plantas , Animales , Sequías , Flores/genética , Expresión GénicaRESUMEN
The quality and starch properties of rice are significantly affected by nitrogen. The effect of the nitrogen application rate (0, 180, and 230 kg ha-1) on the texture of cooked rice and the hierarchical structure and physicochemical properties of starch was investigated over two years using two japonica cultivars, Bengal and Shendao505. Nitrogen application contributed to the hardness and stickiness of cooked rice, reducing the texture quality. The amylose content and pasting properties decreased significantly, while the relative crystallinity increased with the increasing nitrogen rates, and the starch granules became smaller with an increase in uneven and pitted surfaces. The proportion of short-chain amylopectin rose, and long-chain amylopectin declined, which increased the external short-range order by 1045/1022 cm-1. These changes in hierarchical structure and grain size, regulated by nitrogen rates, synergistically increased the setback viscosity, gelatinization enthalpy and temperature and reduced the overall viscosity and breakdown viscosity, indicating that gelatinization and pasting properties were the result of the joint action of several factors. All results showed that increasing nitrogen altered the structure and properties of starch, eventually resulting in a deterioration in eating quality and starch functional properties. A moderate reduction in nitrogen application could improve the texture and starch quality of rice while not impacting on the grain yield.
RESUMEN
Recent advances in genome sequencing and assembly techniques have made it possible to achieve chromosome level reference genomes for citrus. Relatively few genomes have been anchored at the chromosome level and/or are haplotype phased, with the available genomes of varying accuracy and completeness. We now report a phased high-quality chromosome level genome assembly for an Australian native citrus species; Citrus australis (round lime) using highly accurate PacBio HiFi long reads, complemented with Hi-C scaffolding. Hifiasm with Hi-C integrated assembly resulted in a 331 Mb genome of C. australis with two haplotypes of nine pseudochromosomes with an N50 of 36.3 Mb and 98.8% genome assembly completeness (BUSCO). Repeat analysis showed that more than 50% of the genome contained interspersed repeats. Among them, LTR elements were the predominant type (21.0%), of which LTR Gypsy (9.8%) and LTR copia (7.7%) elements were the most abundant repeats. A total of 29 464 genes and 32 009 transcripts were identified in the genome. Of these, 28 222 CDS (25 753 genes) had BLAST hits and 21 401 CDS (75.8%) were annotated with at least one GO term. Citrus specific genes for antimicrobial peptides, defense, volatile compounds and acidity regulation were identified. The synteny analysis showed conserved regions between the two haplotypes with some structural variations in Chromosomes 2, 4, 7 and 8. This chromosome scale, and haplotype resolved C. australis genome will facilitate the study of important genes for citrus breeding and will also allow the enhanced definition of the evolutionary relationships between wild and domesticated citrus species.
RESUMEN
The existence of purple-pericarp super-sweetcorn based on the supersweet mutation, shrunken2 (sh2), has not been previously reported, due to its extremely tight genetic linkage to a non-functional anthocyanin biosynthesis gene, anthocyaninless1 (a1). Generally, pericarp-pigmented starchy purple corn contains significantly higher anthocyanin. The development of purple-pericarp super-sweetcorn is dependent on breaking the a1-sh2 tight genetic linkage, which occurs at a very low frequency of < 1 in 1000 meiotic crossovers. Here, to develop purple-pericarp super-sweetcorn, an initial cross between a male purple-pericarp maize, 'Costa Rica' (A1Sh2.A1Sh2) and a female white shrunken2 super-sweetcorn, 'Tims-white' (a1sh2.a1sh2), was conducted. Subsequent self-pollination based on purple-pericarp-shrunken kernels identified a small frequency (0.08%) of initial heterozygous F3 segregants (A1a1.sh2sh2) producing a fully sh2 cob with a purple-pericarp phenotype, enabled by breaking the close genetic linkage between the a1 and sh2 genes. Resulting rounds of self-pollination generated a F6 homozygous purple-pericarp super-sweetcorn (A1A1.sh2sh2) line, 'Tim1'. Genome sequencing revealed a recombination break between the a1 and yz1 genes of the a1-yz1-x1-sh2 multigenic interval. The novel purple-pericarp super-sweetcorn produced a similar concentration of anthocyanin and sugar as in its purple-pericarp maize and white super-sweetcorn parents, respectively, potentially adding a broader range of health benefits than currently exists with standard yellow/white sweetcorn.
Asunto(s)
Antocianinas , Zea mays , Antocianinas/genética , Mapeo Cromosómico , Fenotipo , Zea mays/genética , Genes de PlantasRESUMEN
BACKGROUND: The importance of uridine 5'-diphosphate glucose (UDP-G) synthesis and degradation on carbon (C) partitioning has been indicated in several studies of plant systems, whereby the kinetic properties and abundance of involved enzymes had a significant effect upon the volume of C moving into the hemicellulose, cellulose and sucrose pools. In this study, the expression of 136 genes belonging to 32 gene families related to UDP-G metabolism was studied in 3 major sugarcane organs (including leaf, internode and root) at 6 different developmental stages in 2 commercial genotypes. RESULTS: Analysis of the genes associated with UDP-G metabolism in leaves indicated low expression of sucrose synthase, but relatively high expression of invertase genes, specifically cell-wall invertase 4 and neutral acid invertase 1-1 and 3 genes. Further, organs that are primarily responsible for sucrose synthesis or bioaccumulation, i.e., in source organs (mature leaves) and storage sink organs (mature internodes), had very low expression of sucrose, cellulose and hemicellulose synthesis genes, specifically sucrose synthase 1 and 2, UDP-G dehydrogenase 5 and several cellulose synthase subunit genes. Gene expression was mostly very low in both leaf and mature internode samples; however, leaves did have a comparatively heightened invertase and sucrose phosphate synthase expression. Major differences were observed in the transcription of several genes between immature sink organs (roots and immature internodes). Gene transcription favoured utilisation of UDP-G toward insoluble and respiratory pools in roots. Whereas, there was comparatively higher expression of sucrose synthetic genes, sucrose phosphate synthase 1 and 4, and comparatively lower expression of many genes associated with C flow to insoluble and respiratory pools including myo-Inositol oxygenase, UDP-G dehydrogenase 4, vacuolar invertase 1, and several cell-wall invertases in immature internodes. CONCLUSION: This study represents the first effort to quantify the expression of gene families associated with UDP-G metabolism in sugarcane. Transcriptional analysis displayed the likelihood that C partitioning in sugarcane is closely related to the transcription of genes associated with the UDP-G metabolism. The data presented may provide an accurate genetic reference for future efforts in altering UDP-G metabolism and in turn C partitioning in sugarcane.
Asunto(s)
Saccharum , Saccharum/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Uridina Difosfato/metabolismo , Sacarosa/metabolismo , Celulosa/metabolismo , Glucosa/metabolismo , Oxidorreductasas/metabolismoRESUMEN
Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.
Asunto(s)
Oryza , Humanos , Semillas , Grano Comestible , Endospermo/genética , Endospermo/metabolismo , Biología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismoRESUMEN
Avocado (Persea americana) is a member of the magnoliids, an early branching lineage of angiosperms that has high value globally with the fruit being highly nutritious. Here, we report a chromosome-level genome assembly for the commercial avocado cultivar Hass, which represents 80% of the world's avocado consumption. The DNA contigs produced from Pacific Biosciences HiFi reads were further assembled using a previously published version of the genome supported by a genetic map. The total assembly was 913 Mb with a contig N50 of 84 Mb. Contigs assigned to the 12 chromosomes represented 874 Mb and covered 98.8% of benchmarked single-copy genes from embryophytes. Annotation of protein coding sequences identified 48 915 avocado genes of which 39 207 could be ascribed functions. The genome contained 62.6% repeat elements. Specific biosynthetic pathways of interest in the genome were investigated. The analysis suggested that the predominant pathway of heptose biosynthesis in avocado may be through sedoheptulose 1,7 bisphosphate rather than via alternative routes. Endoglucanase genes were high in number, consistent with avocado using cellulase for fruit ripening. The avocado genome appeared to have a limited number of translocations between homeologous chromosomes, despite having undergone multiple genome duplication events. Proteome clustering with related species permitted identification of genes unique to avocado and other members of the Lauraceae family, as well as genes unique to species diverged near or prior to the divergence of monocots and eudicots. This genome provides a tool to support future advances in the development of elite avocado varieties with higher yields and fruit quality.