Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 16(153): 20180785, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30991898

RESUMEN

Animal colours commonly act as signals for mates or predators. In many damselfly species, both sexes go through a developmental colour change as adults, and females often show colour polymorphism, which may have a function in mate choice, avoidance of mating harassment and camouflage. In the blue-tailed damselfly, Ischnura elegans, young males are bright green and turn blue as they reach maturity. Females are red ( rufescens) or violet ( violacea) as immatures and, when mature, either mimic the blue colour of the males ( androchrome), or acquire an inconspicuous olive-green ( infuscans) or olive-brown ( obsoleta). The genetic basis of these differences is still unknown. Here, we quantify the colour development of all morphs of I. elegans and investigate colour formation by combining anatomical data and reflectance spectra with optical finite-difference time-domain simulations. While the coloration primarily arises from a disordered assembly of nanospheres in the epidermis, morph-dependent changes result from adjustments in the composition of pterin pigments within the nanospheres, and from associated shifts in optical density. Other pigments fine-tune hue and brilliance by absorbing stray light. These mechanisms produce an impressive palette of colours and offer guidance for genetic studies on the evolution of colour polymorphism and visual communication.


Asunto(s)
Nanosferas/química , Odonata/fisiología , Pigmentación , Pterinas/metabolismo , Animales , Femenino , Integumento Común , Masculino , Pigmentos Biológicos , Pterinas/química , Conducta Sexual Animal
3.
J Exp Biol ; 221(Pt 11)2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29626113

RESUMEN

Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assessed the spatial resolution of the onychophoran Euperipatoides rowelli using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting their spontaneous attraction towards dark objects, we found that E. rowelli can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate the spatial resolution to be in the range 15-40 deg. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high-acuity vision. Our findings suggest that adult specimens of E. rowelli cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely to be sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran.


Asunto(s)
Invertebrados/fisiología , Visión Ocular/fisiología , Animales , Ojo/patología
4.
J Insect Physiol ; 101: 161-168, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28676323

RESUMEN

We investigated whether the spruce seed moth (Cydia strobilella L., Tortricidae: Grapholitini), an important pest in seed orchards of Norway spruce (Picea abies (L.) Karst.), can make use of the spectral properties of its host when searching for flowers to oviposit on. Spectral measurements showed that the flowers, and the cones they develop into, differ from a background of P. abies needles by a higher reflectance of long wavelengths. These differences increase as the flowers develop into mature cones. Electroretinograms (ERGs) in combination with spectral adaptation suggest that C. strobilella has at least three spectral types of photoreceptor; an abundant green-sensitive receptor with maximal sensitivity at wavelength λmax=526nm, a blue-sensitive receptor with λmax=436nm, and an ultraviolet-sensitive receptor with λmax=352nm. Based on our spectral measurements and the receptor properties inferred from the ERGs, we calculated that open flowers, which are suitable oviposition sites, provide detectable achromatic, but almost no chromatic contrasts to the background of needles. In field trials using traps of different spectral properties with or without a female sex pheromone lure, only pheromone-baited traps caught moths. Catches in baited traps were not correlated with the visual contrast of the traps against the background. Thus, visual contrast is probably not the primary cue for finding open host flowers, but it could potentially complement olfaction as a secondary cue, since traps with certain spectral properties caught significantly more moths than others.


Asunto(s)
Mariposas Nocturnas/fisiología , Oviposición , Células Fotorreceptoras de Invertebrados/fisiología , Percepción Visual , Animales , Señales (Psicología) , Femenino , Flores , Masculino , Células Fotorreceptoras de Invertebrados/clasificación , Picea
5.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28533455

RESUMEN

The evolutionary relationship between signals and animal senses has broad significance, with potential consequences for speciation, and for the efficacy and honesty of biological communication. Here we outline current understanding of the diversity of colour vision in two contrasting groups: the phylogenetically conservative birds, and the more variable butterflies. Evidence for coevolution of colour signals and vision exists in both groups, but is limited to observations of phenotypic differences between visual systems, which might be correlated with coloration. Here, to illustrate how one might interpret the evolutionary significance of such differences, we used colour vision modelling based on an avian eye to evaluate the effects of variation in three key characters: photoreceptor spectral sensitivity, oil droplet pigmentation and the proportions of different photoreceptor types. The models predict that physiologically realistic changes in any one character will have little effect, but complementary shifts in all three can substantially affect discriminability of three types of natural spectra. These observations about the adaptive landscape of colour vision may help to explain the general conservatism of photoreceptor spectral sensitivities in birds. This approach can be extended to other types of eye and spectra to inform future work on coevolution of coloration and colour vision.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Asunto(s)
Aves/fisiología , Mariposas Diurnas/fisiología , Visión de Colores , Células Fotorreceptoras de Vertebrados/fisiología , Pigmentación , Percepción Visual , Comunicación Animal , Animales , Evolución Biológica , Color , Modelos Biológicos , Filogenia
6.
J Neurosci ; 36(19): 5397-404, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170135

RESUMEN

UNLABELLED: Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. SIGNIFICANCE STATEMENT: The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called polarization vision. Because skylight is polarized in an orientation that is rigidly determined by the position of the sun, this cue provides compass information. Behavioral experiments have shown that many species use the polarization pattern in the sky to direct locomotion. Here we describe the input stage of the fly's polarization-vision system.


Asunto(s)
Ojo Compuesto de los Artrópodos/fisiología , Drosophila melanogaster/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Navegación Espacial , Animales , Ojo Compuesto de los Artrópodos/citología , Drosophila melanogaster/citología , Visión Ocular , Percepción Visual
7.
Integr Comp Biol ; 55(5): 830-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319405

RESUMEN

Pancrustacea (Hexapoda plus Crustacea) display an enormous diversity of eye designs, including multiple types of compound eyes and single-chambered eyes, often with color vision and/or polarization vision. Although the eyes of some pancrustaceans are well-studied, there is still much to learn about the evolutionary paths to this amazing visual diversity. Here, we examine the evolutionary history of eyes and opsins across the principle groups of Pancrustacea. First, we review the distribution of lateral and median eyes, which are found in all major pancrustacean clades (Oligostraca, Multicrustacea, and Allotriocarida). At the same time, each of those three clades has taxa that lack lateral and/or median eyes. We then compile data on the expression of visual r-opsins (rhabdomeric opsins) in lateral and median eyes across Pancrustacea and find no evidence for ancient opsin clades expressed in only one type of eye. Instead, opsin clades with eye-specific expression are products of recent gene duplications, indicating a dynamic past, during which opsins often changed expression from one type of eye to another. We also investigate the evolutionary history of peropsins and r-opsins, which are both known to be expressed in eyes of arthropods. By searching published transcriptomes, we discover for the first time crustacean peropsins and suggest that previously reported odonate opsins may also be peropsins. Finally, from analyzing a reconciled, phylogenetic tree of arthropod r-opsins, we infer that the ancestral pancrustacean had four visual opsin genes, which we call LW2, MW1, MW2, and SW. These are the progenitors of opsin clades that later were variously duplicated or lost during pancrustacean evolution. Together, our results reveal a particularly dynamic history, with losses of eyes, duplication and loss of opsin genes, and changes in opsin expression between types of eyes.


Asunto(s)
Crustáceos/anatomía & histología , Ojo/anatomía & histología , Insectos/anatomía & histología , Opsinas/metabolismo , Animales , Evolución Biológica , Crustáceos/fisiología , Insectos/fisiología , Fenómenos Fisiológicos Oculares , Opsinas/genética
8.
J Exp Biol ; 218(Pt 6): 915-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25617459

RESUMEN

Onychophorans typically possess a pair of simple eyes, inherited from the last common ancestor of Panarthropoda (Onychophora+Tardigrada+Arthropoda). These visual organs are thought to be homologous to the arthropod median ocelli, whereas the compound eyes probably evolved in the arthropod lineage. To gain insights into the ancestral function and evolution of the visual system in panarthropods, we investigated phototactic behaviour, opsin gene expression and the spectral sensitivity of the eyes in two representative species of Onychophora: Euperipatoides rowelli (Peripatopsidae) and Principapillatus hitoyensis (Peripatidae). Our behavioural analyses, in conjunction with previous data, demonstrate that both species exhibit photonegative responses to wavelengths ranging from ultraviolet to green light (370-530 nm), and electroretinograms reveal that the onychophoran eye is maximally sensitive to blue light (peak sensitivity ∼480 nm). Template fits to these sensitivities suggest that the onychophoran eye is monochromatic. To clarify which type of opsin the single visual pigment is based on, we localised the corresponding mRNA in the onychophoran eye and brain using in situ hybridization. Our data show that the r-opsin gene (onychopsin) is expressed exclusively in the photoreceptor cells of the eye, whereas c-opsin mRNA is confined to the optic ganglion cells and the brain. Together, our findings suggest that the onychopsin is involved in vision, whereas c-opsin might have a photoreceptive, non-visual function in onychophorans.


Asunto(s)
Invertebrados/fisiología , Opsinas/genética , Animales , Electrorretinografía , Ojo/citología , Femenino , Expresión Génica , Hibridación Fluorescente in Situ , Invertebrados/genética , Masculino , Microscopía Confocal , Datos de Secuencia Molecular , Opsinas/metabolismo , Análisis de Secuencia de ADN , Percepción Visual
9.
Curr Biol ; 23(23): R1043-5, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24309280

RESUMEN

In the last one hundred years, colour vision has been demonstrated in bees and many other insects. But the underlying neural wiring remained elusive. A new study on Drosophila melanogaster combining behavioural and genetic tools yields surprising insights.


Asunto(s)
Percepción de Color/genética , Visión de Colores/genética , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Rayos Ultravioleta
10.
BMC Evol Biol ; 12: 163, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22935102

RESUMEN

BACKGROUND: Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial for understanding the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect. RESULTS: Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes. CONCLUSIONS: Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a functional explanation. From the opsin phylogeny, we conclude that gene duplications, which permitted differential opsin expression in insect ocelli and compound eyes, occurred independently in several insect lineages and are recent compared to the origin of the eyes themselves.


Asunto(s)
Ojo Compuesto de los Artrópodos/fisiología , Opsinas de los Conos/genética , Evolución Molecular , Gryllidae/genética , Animales , Opsinas de los Conos/fisiología , Duplicación de Gen , Gryllidae/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Filogenia , Pigmentos Retinianos/fisiología
11.
Mol Biol Evol ; 29(11): 3451-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22683812

RESUMEN

Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.


Asunto(s)
Artrópodos/genética , Evolución Molecular , Variación Genética , Opsinas/genética , Absorción/efectos de la radiación , Animales , Artrópodos/efectos de la radiación , Conducta Animal/efectos de la radiación , Bases de Datos de Proteínas , Secuenciación de Nucleótidos de Alto Rendimiento , Luz , Funciones de Verosimilitud , Masculino , Fototropismo/genética , Fototropismo/efectos de la radiación , Filogenia , Transcriptoma/genética , Visión Ocular/genética , Visión Ocular/efectos de la radiación
12.
J Exp Biol ; 210(Pt 18): 3266-76, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17766304

RESUMEN

Field crickets (Gryllus campestris L.) are able to detect the orientation of the electric vector (e-vector) of linearly polarized light. They presumably use this sense to exploit the celestial polarization pattern for course control or navigation. Polarization vision in crickets can be tested by eliciting a spontaneous polarotactic response. Previously, wide and 100% polarized stimuli were employed to induce this behavior. However, field crickets live on meadows where the observation of the sky is strongly limited by surrounding vegetation. Moreover, degrees of polarization (d) in the natural sky are much lower than 100%. We have therefore investigated thresholds for the behavioral response to polarized light under conditions mimicking those experienced by the insects in the field. We show that crickets are able to rely on polarized stimuli of just 1 degrees diameter. We also provide evidence that they exploit polarization down to an (average) polarization level of less than 7%, irrespective of whether the stimulus is homogeneous, such as under haze, or patched, such as a sky spotted by clouds. Our data demonstrate that crickets can rely on skylight polarization even under unfavorable celestial conditions, emphasizing the significance of polarized skylight orientation for insects.


Asunto(s)
Conducta Animal/fisiología , Gryllidae/fisiología , Luz , Percepción Visual/fisiología , Animales , Conducta Animal/efectos de la radiación , Gryllidae/efectos de la radiación , Orientación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...