RESUMEN
Mechanically stretchable strain sensors gain tremendous attention for bioinspired skin sensation systems and artificially intelligent tactile sensors. However, high-accuracy detection of both strain intensity and direction with simple device/array structures is still insufficient. To overcome this limitation, an omnidirectional strain perception platform utilizing a stretchable strain sensor array with triangular-sensor-assembly (three sensors tilted by 45°) coupled with machine learning (ML) -based neural network classification algorithm, is proposed. The strain sensor, which is constructed with strain-insensitive electrode regions and strain-sensitive channel region, can minimize the undesirable electrical intrusion from the electrodes by strain, leading to a heterogeneous surface structure for more reliable strain sensing characteristics. The strain sensor exhibits decent sensitivity with gauge factor (GF) of ≈8, a moderate sensing range (≈0-35%), and relatively good reliability (3000 stretching cycles). More importantly, by employing a multiclass-multioutput behavior-learned cognition algorithm, the stretchable sensor array with triangular-sensor-assembly exhibits highly accurate recognition of both direction and intensity of an arbitrary strain by interpretating the correlated signals from the three-unit sensors. The omnidirectional strain perception platform with its neural network algorithm exhibits overall strain intensity and direction accuracy around 98% ± 2% over a strain range of ≈0-30% in various surface stimuli environments.
RESUMEN
High linearity/sensitivity and a wide dynamic sensing range are the most desirable features for pressure sensors to accurately detect and respond to external pressure stimuli. Even though a number of recent studies have demonstrated a low-cost pressure sensing device for a smart insole system by using scalable and deformable conductive materials, they still lack stretchability and desirable properties such as high sensitivity, hysteresis, linearity, and fast response time to obtain accurate and reliable data. To resolve this issue, a flexible and stretchable piezoresistive pressure sensor with high linear response over a wide pressure range is developed and integrated in a wearable insole system. The sensor uses multi-walled carbon nanotubes and polydimethylsiloxane (MWCNT/PDMS) composites with gradient density double-stacked configuration as well as randomly distributed surface microstructure (RDSM). The randomly distributed surface of the MWCNT/PDMS composite is easily and non-artificially generated by the evaporation of residual IPA solvent during a composite curing process. Due to two functional features consisting of the double-stacked composite configuration with different gradient MWCNT density and RDSM, the pressure sensor shows high linear sensitivity (â¼82.5 kPa) and a pressure range of 0-1 MPa, providing extensive potential applications in monitoring human motions. Moreover, for a practical wearable application detecting the user's real-time motions, a custom-designed output signal acquisition system has been developed and integrated with the insole pressure sensor. As a result, the insole sensor can successfully detect walking, running, and jumping movements and can be used in daily life to monitor gait patterns by virtue of its long-term stability.
Asunto(s)
Nanotubos de Carbono , Dimetilpolisiloxanos/química , Humanos , Movimiento (Física) , Nanotubos de Carbono/química , Zapatos , CaminataRESUMEN
Semiconducting single-walled carbon nanotubes (s-SWCNTs) have gathered significant interest in various emerging electronics due to their outstanding electrical and mechanical properties. Although large-area and low-cost fabrication of s-SWCNT field effect transistors (FETs) can be easily achieved via solution processing, the electrical performance of the solution-based s-SWCNT FETs is often limited by the charge transport in the s-SWCNT networks and interface between the s-SWCNT and the dielectrics depending on both s-SWCNT solution synthesis and device architecture. Here, we investigate the surface and interfacial electro-chemical behaviors of s-SWCNTs. In addition, we propose a cost-effective and straightforward process capable of minimizing polymers bound to s-SWCNT surfaces acting as an interfering element for the charge carrier transport via a heat-assisted purification (HAP). With the HAP treated s-SWCNTs, we introduced conformal dielectric configuration for s-SWCNT FETs, which are explored by a carefully designed wide array of electrical and chemical characterizations with finite-element analysis (FEA) computer simulation. For more favorable gate-field-induced surface and interfacial behaviors of s-SWCNT, we implemented conformally gated highly capacitive s-SWCNT FETs with ion-gel dielectrics, demonstrating field-effect mobility of ~8.19 cm2/Vâ s and on/off current ratio of ~105 along with negligible hysteresis.
RESUMEN
Textile-based pressure sensors have garnered considerable interest in electronic textiles due to their diverse applications, including human-machine interface and healthcare monitoring systems. We studied a textile-based capacitive pressure sensor array using a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)/ionic liquid (IL) composite film. By constructing a capacitor structure with Ag-plated conductive fiber electrodes that are embedded in fabrics, a capacitive pressure sensor showing high sensitivity, good operation stability, and a wide sensing range could be created. By optimizing the PVDF-HFP:IL ratio (6.5:3.5), the fabricated textile pressure sensors showed sensitivity of 9.51 kPa-1 and 0.69 kPa-1 in the pressure ranges of 0-20 kPa and 20-100 kPa, respectively. The pressure-dependent capacitance variation in our device was explained based on the change in the contact-area formed between the multi-filament fiber electrodes and the PVDF-HFP/IL film. To demonstrate the applicability and scalability of the sensor device, a 3 × 3 pressure sensor array was fabricated. Due to its matrix-type array structure and capacitive sensing mechanism, multi-point detection was possible, and the different positions and the weights of the objects could be identified.
RESUMEN
Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa-1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = -0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS.
RESUMEN
Optoelectronic applications using perovskites have emerged as one of the most promising platforms such as phototransistors, photovoltaics, and photodetectors. However, high-performance and reliable perovskite photonic devices are often hindered by the limited spectral ranges of the perovskite system along with the lack of appropriate processing technologies for the implementation of reliable device architectures. Here, we explore a hybrid phototransistor with a heterojunction of a Sn-Pb binary mixed halide perovskite (CsSn0.6Pb0.4I2.6Br0.4) light absorber and an amorphous-In-Ga-Zn-O (a-IGZO) charge carrying layer. By incorporating Sn-Pb binary components with an all-inorganic base, broadening of light-absorbing spectral ranges with enhanced stability has been achieved, indicating inevitable highly increased conductivity, which triggers a high off-current of the devices. Accordingly, the selectively ultraviolet (UV)-irradiated electrical deactivation (SUED) process is carried out to suppress the high off-current with a reliable device structure. Particularly, it is noted that the selective UV irradiation can facilitate oxidation and distortion of the chemical structure in specific perovskite regions, providing enhanced gate bias modulation of the phototransistor with an increased on/off-current ratio from â¼103 to â¼106. Finally, the SUED-processed phototransistor exhibits an improvement in the photosensitivity by more than 3 orders of magnitude up to 8.0 × 104 and detects in the spectral range from visible to near-infrared (NIR) light (â¼860 nm) with good on/off switching behaviors.
RESUMEN
Low-temperature solution-processed oxide semiconductor and dielectric films typically possess a substantial number of defects and impurities due to incomplete metal-oxygen bond formation, causing poor electrical performance and stability. Here, we exploit a facile route to improve the film quality and the interfacial property of low-temperature solution-processed oxide thin films via elemental diffusion between metallic ion-doped InOx (M:InOx) ternary oxide semiconductor and AlOx gate dielectric layers. Particularly, it was revealed that metallic dopants such as magnesium (Mg) and hafnium (Hf) having a small ionic radius, a high Gibbs energy of oxidation, and bonding dissociation energy could successfully diffuse into the low-quality AlOx gate dielectric layer and effectively reduce the structural defects and residual impurities present in the bulk and at the semiconductor/dielectric interface. Through an extensive investigation on the compositional, structural, and electrical properties of M:InOx/AlOx thin-film transistors (TFTs), we provide direct evidences of elemental diffusion occurred between M:InOx and AlOx layers as well as its contribution to the electrical performance and operational stability. Using the elemental diffusion process, we demonstrate solution-processed Hf:InOx TFTs using a low-temperature (180 °C) AlOx gate dielectric having a field-effect mobility of 2.83 cm2 V-1·s-1 and improved bias stability. Based on these results, it is concluded that the elemental diffusion between oxide semiconductor and gate dielectric layers can play a crucial role in realizing oxide TFTs with enhanced structural and interfacial integrity.
RESUMEN
For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa-1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa-1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.
Asunto(s)
Monitoreo Fisiológico/instrumentación , Nanocables , Poliuretanos , Dispositivos Electrónicos Vestibles , Humanos , Presión , PlataRESUMEN
Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.
RESUMEN
To demonstrate the wearable flexible/stretchable health-monitoring sensor, it is necessary to develop advanced functional materials and fabrication technologies. Among the various developed materials and fabrication processes for wearable sensors, carbon-based materials and textile-based configurations are considered as promising approaches due to their outstanding characteristics such as high conductivity, lightweight, high mechanical properties, wearability, and biocompatibility. Despite these advantages, in order to realize practical wearable applications, electrical and mechanical performances such as sensitivity, stability, and long-term use are still not satisfied. Accordingly, in this review, we describe recent advances in process technologies to fabricate advanced carbon-based materials and textile-based sensors, followed by their applications such as human activity and electrophysiological sensors. Furthermore, we discuss the remaining challenges for both carbon- and textile-based wearable sensors and then suggest effective strategies to realize the wearable sensors in health monitoring.
Asunto(s)
Carbono , Textiles , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , HumanosRESUMEN
As an alternative strategy for conventional high-temperature crystallization of metal oxide (MO) channel layers, the catalytic metal-accelerated crystallization (CMAC) process using a metal seed layer is demonstrated for low-temperature crystallization of solution-processed MO semiconductors. In the CMAC process, the catalytic metal layer plays the role of seed sites for initiating and accelerating the crystallization of amorphous MO films. Generally, the solution-processed crystalline-TiO2 (c-TiO2) films required high-temperature crystallization conditions (≥500-600 °C), showing low electrical performance with a high defect density. In contrast, the suggested CMAC process could effectively lower crystallization temperature of the a-TiO2 films, enabling high-quality c-TiO2 films with well-aligned anatase grains and low-defect density. The various crystalline catalytic layers were deposited over the earth-abundant n-type amorphous titanium oxide (a-TiO2) films. Also, then, the CMAC process was performed for facile low-temperature translation of solution-processed a-TiO2 to a highly crystallized state. In particular, the Al-CMAC process using the crystalline thin-aluminum (Al) catalytic metal seed layer facilitates low-temperature (≥300 °C) crystallization of the solution-processed a-TiO2 films and the fabrication of high-performance solution-processed c-TiO2 thin-film transistors with superior field-effect mobility, good on/off switching behavior, and improved operational stability.
RESUMEN
Mimicking human skin sensation such as spontaneous multimodal perception and identification/discrimination of intermixed stimuli is severely hindered by the difficulty of efficient integration of complex cutaneous receptor-emulating circuitry and the lack of an appropriate protocol to discern the intermixed signals. Here, a highly stretchable cross-reactive sensor matrix is demonstrated, which can detect, classify, and discriminate various intermixed tactile and thermal stimuli using a machine-learning approach. Particularly, the multimodal perception ability is achieved by utilizing a learning algorithm based on the bag-of-words (BoW) model, where, by learning and recognizing the stimulus-dependent 2D output image patterns, the discrimination of each stimulus in various multimodal stimuli environments is possible. In addition, the single sensor device integrated in the cross-reactive sensor matrix exhibits multimodal detection of strain, flexion, pressure, and temperature. It is hoped that his proof-of-concept device with machine-learning-based approach will provide a versatile route to simplify the electronic skin systems with reduced architecture complexity and adaptability to various environments beyond the limitation of conventional "lock and key" approaches.
Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles/instrumentación , Dispositivos Electrónicos Vestibles , Algoritmos , Materiales Biocompatibles Revestidos/química , Humanos , Aprendizaje Automático , Modelos Químicos , Nanocables/química , Percepción , Poliuretanos/química , Presión , Plata/química , Temperatura , TactoRESUMEN
Quantum dot (QD)-based optoelectronics have received great interest for versatile applications because of their excellent photosensitivity, facile solution processability, and the wide range of band gap tunability. In addition, QD-based hybrid devices, which are combined with various high-mobility semiconductors, have been actively researched to enhance the optoelectronic characteristics and maximize the zero-dimensional structural advantages, such as tunable band gap and high light absorption. However, the difficulty of highly efficient charge transfer between QDs and the semiconductors and the lack of systematic analysis for the interfaces have impeded the fidelity of this platform, resulting in complex device architectures and unsatisfactory device performance. Here, we report ultrahigh detective phototransistors with highly efficient photo-induced charge separation using a Sn2S64--capped CdSe QD/amorphous oxide semiconductor (AOS) hybrid structure. The photo-induced electron transfer characteristics at the interface of the two materials were comprehensively investigated with an array of electrochemical and spectroscopic analyses. In particular, photocurrent imaging microscopy revealed that interface engineering in QD/AOS with chelating chalcometallate ligands causes efficient charge transfer, resulting in photovoltaic-dominated responses over the whole channel area. On the other hand, monodentate ligand-incorporated QD/AOS-based devices typically exhibit limited charge transfer with atomic vibration, showing photo-thermoelectric-dominated responses in the drain electrode area.
RESUMEN
For the fabrication of next-generation flexible metal oxide devices, solution-based methods are considered as a promising approach because of their potential advantages, such as high-throughput, large-area scalability, low-cost processing, and easy control over the chemical composition. However, to obtain certain levels of electrical performance, a high process temperature is essential, which can significantly limit its application in flexible electronics. Therefore, this article discusses recent research conducted on developing low-temperature, solution-processed, flexible, metal oxide semiconductor devices, from a single thin-film transistor device to fully integrated circuits and systems. The main challenges of solution-processed metal oxide semiconductors are introduced. Recent advances in materials, processes, and semiconductor structures are then presented, followed by recent advances in electronic circuits and systems based on these semiconductors, including emerging flexible energy-harvesting devices for self-powered systems that integrate displays, sensors, data-storage units, and information processing functions.
RESUMEN
The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlOx gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (Evo = 9.8 eV) and a low standard reduction potential (E0 = -2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal-oxygen-metal (M-O-M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InOx channel layer, Mg:InOx TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of >4 cm2 V-1 s-1. Furthermore, the electric characteristics of the low-temperature-processed AlOx gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.
RESUMEN
Emulating the biological visual perception system typically requires a complex architecture including the integration of an artificial retina and optic nerves with various synaptic behaviors. However, self-adaptive synaptic behaviors, which are frequently translated into visual nerves to adjust environmental light intensities, have been one of the serious challenges for the artificial visual perception system. Here, an artificial optoelectronic neuromorphic device array to emulate the light-adaptable synaptic functions (photopic and scotopic adaptation) of the biological visual perception system is presented. By employing an artificial visual perception circuit including a metal chalcogenide photoreceptor transistor and a metal oxide synaptic transistor, the optoelectronic neuromorphic device successfully demonstrates diverse visual synaptic functions such as phototriggered short-term plasticity, long-term potentiation, and neural facilitation. More importantly, the environment-adaptable perception behaviors at various levels of the light illumination are well reproduced by adjusting load transistor in the circuit, exhibiting the acts of variable dynamic ranges of biological system. This development paves a new way to fabricate an environmental-adaptable artificial visual perception system with profound implications for the field of future neuromorphic electronics.
Asunto(s)
Redes Neurales de la Computación , Transistores Electrónicos , Luz , Sinapsis/fisiología , Percepción VisualRESUMEN
Deep ultraviolet (DUV)-treatment is an efficient method for the removal of high-energy-barrier polymeric or aliphatic organic ligands from nanomaterials. Regardless of morphology and material, the treatment can be used for nanoparticles, nanowires, and even nanosheets. The high-energy photon irradiation from low-pressure mercury lamps or radio frequency (RF) discharge excimer lamps could enhance the electrical conductivity of various nanomaterial matrixes, such as Ag nanoparticles, Bi2Se3 nanosheets, and Ag nanowires, with the aliphatic alkyl chained ligand (oleylamine; OAm) and polymeric ligand (polyvinyl pyrrolidone; PVP) as surfactants. In particular, Ag nanoparticles (AgNPs) that are DUV-treated with polyvinyl pyrrolidone (PVP) for 90 min (50-60 °C) exhibited a sheet resistance of 0.54 Ω â¡-1, while thermal-treated AgNP with PVP had a sheet resistance of 7.5 kΩ â¡-1 at 60 °C. The simple photochemical treatment on various dimensionality nanomaterials will be an efficient sintering method for flexible devices and wearable devices with solution-processed nanomaterials.
RESUMEN
A fiber-based single-walled carbon nanotube (SWCNT) thin-film-transistor (TFT) has been proposed. We designed complementary SWCNT TFT circuit based on SPICE simulations, with device parameters extracted from the fabricated fiber-based SWCNT TFTs, such as threshold voltage, contact resistance, and off-/gate-leakage current. We fabricated the SWCNTs CMOS inverter circuits using the selective passivation and n-doping processes on a fiber substrate. By comparing the simulation and experimental results, we could enhance the circuit's performance by tuning the threshold voltage between p-type and n-type TFTs, reducing the source/drain contact resistance and off current level, and maintaining a low output capacitance of the TFTs. Importantly, it was found that the voltage gain, output swing range, and frequency response of the fiber-based inverter circuits can be dramatically improved.
RESUMEN
Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested.
Asunto(s)
Dispositivos Electrónicos Vestibles , Equipos y Suministros Eléctricos , Electrónica , TextilesRESUMEN
Oxide dielectric materials play a key role in a wide range of high-performance solid-state electronics from semiconductor devices to emerging wearable and soft bioelectronic devices. Although several previous advances are noteworthy, their typical processing temperature still far exceeds the thermal limitations of soft materials, impeding their wide utilization in these emerging fields. Here, we report an innovative route to form highly reliable aluminum oxide dielectric films using an ultralow-temperature (<60 °C) solution process with a class of oxide nanocluster precursors. The extremely low-temperature synthesis of oxide dielectric films was achieved by using low-impurity, bulky metal-oxo-hydroxy nanoclusters combined with a spatially controllable and highly energetic light activation process. It was noteworthy that the room-temperature light activation process was highly effective in dissociating the metal-oxo-hydroxy clusters, enabling the formation of a dense atomic network at low temperature. The ultralow-temperature solution-processed oxide dielectrics demonstrated high breakdown field (>6 MV cm-1), low leakage (â¼1 × 10-8 A cm-2 at 2 MV cm-1), and excellent electrical stability comparable to those of vacuum-deposited and high-temperature-processed dielectric films. For potential applications of the oxide dielectrics, transparent metal oxides and carbon nanotube active devices as well as integrated circuits were implemented directly on both ultrathin polymeric and highly stretchable substrates.