Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros












Intervalo de año de publicación
1.
Mar Drugs ; 22(9)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39330278

RESUMEN

Recent advancements in the large-scale cultivation of Tetraselmis sp. in Korea have enabled year-round production of this marine microalgae. This study explores the potential industrial applications of Tetraselmis sp. biomass by investigating the antiviral properties of its extracts and primary components. The antiviral effects of Tetraselmis sp. extracts were evaluated in Zika virus (ZIKV)-infected cells. Following extensive isolation and purification, the main compounds were characterized using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) analyses. Their antiviral activities were confirmed using in vitro and in silico tests. Tetraselmis sp. extracts reduced infectious viral particles and non-structural protein 1 messenger RNA levels in ZIKV-infected cells without inducing cytotoxicity. Additionally, they modulated the interferon-mediated immune system responses. Tetraselmis sp. extracts are composed of four main chlorophylls: chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, hydroxychlorophyll a, and hydroxypheophytin a. Among them, chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, and hydroxypheophytin showed the antiviral activities in ZIKV-infected cells and molecular docking simulations predicted interactions between these chlorophylls and ZIKV. Our findings suggest that Tetraselmis sp. chlorophyll extracts exert antiviral effects against ZIKV and could serve as potential therapeutic candidates against ZIKV infection.


Asunto(s)
Antivirales , Clorofila , Microalgas , Simulación del Acoplamiento Molecular , Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Microalgas/química , Clorofila/farmacología , Clorofila/análogos & derivados , Humanos , Animales , Chlorocebus aethiops , Chlorophyta/química , Células Vero , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Foods ; 13(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39335831

RESUMEN

Abalone, a marine edible gastropod with nutritional value, is a popular seafood delicacy worldwide, especially in Asia; however, viscera by-products are generally discarded during processing. Therefore, we investigated the skin health benefits of abalone viscera ultrasonic extract (AVU) in human dermal fibroblasts (HDFs) and human keratinocyte (HaCaT) cells. AVU showed valuable protein contents, indicating that it is a worthy and safe material for industrial application. AVU increased collagen synthesis production and messenger RNA (mRNA) expression of Collagen Type I Alpha 1, 2, and 3 chains through the transforming growth factor beta/suppressor of mother against the decapentaplegic pathway in HDF cells. AVU also increased hyaluronic acid production, upregulated Hyaluronan Synthases 1, 2, and 3, filaggrin and aquaporin3 mRNA levels, and downregulated hyaluronidase mRNA levels in HaCaT cells. Furthermore, mechanistic studies showed that AVU increased the phosphorylation of extracellular signal-regulated kinase, p38, and cyclic AMP response-binding protein activation. AVU activated the transcription factors, phosphoinositide 3-kinase, protein kinase B, and nuclear factor kappa B cell p65 and downregulated the degranulation of inhibitory kappa B in HaCaT cells. Studies of hyaluronic acid production in AVU by inhibiting EKR, p38 and NF-κB have shown that p38 MAPK and NF-κB signaling are pivotal mechanisms, particularly in the AVU. These results demonstrated that AVU produced from by-products may improve skin health and may thus be used as a functional food and cosmetics ingredient.

3.
Foods ; 13(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39335941

RESUMEN

Experiments are increasingly performed in vitro; therefore, cell culture technology is essential for scientific progress. Fetal bovine serum (FBS) is a key cell culture supplement providing growth factors, amino acids, and hormones. However, FBS is not readily available on the market, has contamination risks, and has ethical concerns. This study aimed to investigate Haematococcus pluvialis extracts (HE) as a potential substitute for FBS. Therefore, we assessed the effects of HE on cell maintenance, growth, and cycle progression in human lung fibroblasts (MRC-5). Cell progression and monosaccharide, fatty acid, and free amino acid compositions were analyzed using cell cycle analysis, bio-liquid chromatography, gas chromatography, and high-performance liquid chromatography, respectively. The results of nutritional profiles showed that the extracts contained essential amino acids required for synthesizing non-essential amino acids and other metabolic intermediates. Furthermore, most of the components present in HE were consistent with those found in FBS. HE enhanced cell viability and regulated cell cycle phases. Additionally, the interaction between growth factor cocktails and HE significantly improved cell viability, promoted cell cycle progression, and activated key cell cycle regulators, such as cyclin A and cyclin-dependent kinases 1 (CDK1). Our findings suggest that HE have considerable potential to substitute FBS in MRC-5 cell cultures and have functional and ethical advantages.

4.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39337368

RESUMEN

The development of serum-free media (SFM) is critical to advance cell culture techniques used in viral vaccine production and address the ethical concerns and contamination risks associated with fetal bovine serum (FBS). This study evaluated the effects of marine microalgal extracts and growth factor cocktails on the activity of Madin-Darby canine kidney (MDCK) and Vero cells. Five marine microalgal species were used: Spirulina platensis (SP), Dunaliella salina (DS), Haematococcus pluvialis (HP), Nannochloropsis salina (NS), and Tetraselmis sp. (TS). DS and SP extracts significantly increased the proliferation rate of both MDCK and Vero cells. DS had a proliferation rate of 149.56% and 195.50% in MDCK and Vero cells, respectively, compared with that in serum-free medium (SFM). Notably, DS and SP extracts significantly increased superoxide dismutase (SOD) activity, which was 118.61% in MDCK cells and 130.08% in Vero cells for DS, and 108.72% in MDCK cells and 125.63% in Vero cells for SP, indicating a reduction in intracellular oxidative stress. Marine microalgal extracts, especially DS and SP, are feasible alternatives to FBS in cell culture as they promote cell proliferation, ensure safety, and supply essential nutrients while reducing oxidative stress.


Asunto(s)
Proliferación Celular , Microalgas , Animales , Perros , Microalgas/química , Células Vero , Chlorocebus aethiops , Medio de Cultivo Libre de Suero/química , Proliferación Celular/efectos de los fármacos , Células de Riñón Canino Madin Darby , Técnicas de Cultivo de Célula/métodos , Superóxido Dismutasa/metabolismo
5.
ACS Omega ; 9(25): 27592-27609, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947812

RESUMEN

Herein, we report the first- and second-generation syntheses of (+)-ieodomycins A and B and their stereoisomers via the late-stage elaboration of their conjugated E-diene side chains. Key steps for successful synthesis included Keck asymmetric allylation to introduce a hydroxyl group at the C5 position, consecutive Wipf's carboalumination modification, iodination, Sharpless asymmetric dihydroxylation, one-carbon homologation via cyanation, Mukaiyama lactonization, and Stille cross-coupling to form the conjugated E-diene moiety. Further, the preliminary in vitro bioactivity profile against various disease-related molecular targets and cell lines was investigated. Results indicated that compounds 30b and 30c, diastereoisomers of (+)-ieodomycin B (2), serve as α-glucosidase inhibitors, while compounds 30b and 30d inhibit the angiotensin-converting enzyme.

6.
Mar Drugs ; 22(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921558

RESUMEN

Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sargassum , Xantófilas , Virus Zika , Antivirales/farmacología , Antivirales/aislamiento & purificación , Antivirales/química , Virus Zika/efectos de los fármacos , Animales , Sargassum/química , Chlorocebus aethiops , Xantófilas/farmacología , Xantófilas/aislamiento & purificación , Xantófilas/química , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
7.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38812330

RESUMEN

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Asunto(s)
Etanol , Melaninas , Melanocitos , Monofenol Monooxigenasa , Sargassum , Animales , Sargassum/química , Melaninas/biosíntesis , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Ratones , Etanol/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , alfa-MSH/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Oxidorreductasas Intramoleculares/metabolismo
8.
J Ethnopharmacol ; 321: 117529, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042384

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY: Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS: The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of ß-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS: TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1ß, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS: These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.


Asunto(s)
Anafilaxia , Hipersensibilidad , Ratones , Animales , Inmunoglobulina E , Curcuma , Albúmina Sérica Bovina , FN-kappa B/metabolismo , Histamina/metabolismo , Mastocitos , Anafilaxis Cutánea Pasiva , Ratones Endogámicos BALB C , Médula Ósea , Hipersensibilidad/tratamiento farmacológico , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Quimiocinas/metabolismo , Degranulación de la Célula
9.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958757

RESUMEN

A new calicivirus isolated from a walrus was reported in 2004. Since unknown marine mammalian zoonotic viruses could pose great risks to human health, this study aimed to develop therapeutic countermeasures to quell any potential outbreak of a pandemic caused by this virus. We first generated a 3D model of the walrus calicivirus capsid protein and identified compounds from marine natural products, especially phlorotannins, as potential walrus calicivirus inhibitors. A 3D model of the target protein was generated using homology modeling based on two publicly available template sequences. The sequence of the capsid protein exhibited 31.3% identity and 42.7% similarity with the reference templates. The accuracy and reliability of the predicted residues were validated via Ramachandran plotting. Molecular docking simulations were performed between the capsid protein 3D model and 17 phlorotannins. Among them, five phlorotannins demonstrated markedly stable docking profiles; in particular, 2,7-phloroglucinol-6,6-bieckol showed favorable structural integrity and stability during molecular dynamics simulations. The results indicate that the phlorotannins are promising walrus calicivirus inhibitors. Overall, the study findings showcase the rapid turnaround of in silico-based drug discovery approaches, providing useful insights for developing potential therapies against novel pathogenic viruses, especially when the 3D structures of the viruses remain experimentally unknown.


Asunto(s)
Virus ARN , Morsas , Animales , Humanos , Proteínas de la Cápside , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados
10.
Foods ; 12(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37835313

RESUMEN

Turbo cornutus, a marine gastropod mollusk commonly called sea snail, is found along the southern coast of Korea and holds considerable importance as a marine food resource, particularly on Jeju Island, Korea. Data are scarce on the antioxidant activity of hot water extracts from T. cornutus visceral tissue. Therefore, this study was performed to evaluate the antioxidant activities of T. cornutus visceral tissue hot water extract (TVE) and the underlying mechanisms against hydrogen peroxide-induced oxidative stress in Vero cells. The amino acid composition and antioxidant effects of TVE were evaluated. Furthermore, the impact of TVE on the expression of proteins within the mitogen-activated protein kinase (MAPK) pathway is investigated. TVE showed a concentration-dependent enhancement in its scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (IC50 = 1.07 ± 0.06 mg/mL) and hydrogen peroxide (IC50 = 0.33 ± 0.03 mg/mL). TVE reduced intracellular reactive oxygen species (ROS) production and maintained cell viability under H2O2-induced oxidative stress by suppressing apoptosis in Vero cells. Additionally, TVE demonstrated regulatory effects on the MAPK and protein kinase B (Akt) signaling pathways activated by H2O2. In conclusion, the findings from our study propose that TVE holds potential as a bioactive component in the formulation of functional foods.

11.
Bioresour Technol ; 390: 129827, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802367

RESUMEN

Low productivity and high cost remain major bottlenecks for the large-scale production of Haematococcus sp. This study explored biomass production and carotenoid accumulation in Haematococcus sp. (KCTC 12348BP) using drying film culture. The broth-cultured strain (3.2 × 106 cells/mL, 0.83 ± 0.02 mg/mL for a 21 d culture) was cultured under various conditions (different inoculum volumes and mist feeding intervals) in waterless agar plates at 28 ± 0.5 °C, under fluorescent light (12 h light-dark cycle) for 1 month. The maximum biomass obtained was 17.60 ± 0.72 g/m2, while the maximum astaxanthin concentration was 8.23 ± 1.13 mg/g in the culture using 1 mL inoculum and 3 d feeding interval. Drought stress in drying film culture effectively induced the accumulation of carotenoids from ß-carotene, facilitating the production of canthaxanthin via the astaxanthin biosynthesis pathway. This cost-effective culture system can increase the biomass and carotenoid pigment production in Haematococcus sp.


Asunto(s)
Chlorophyceae , Chlorophyta , Chlorophyta/metabolismo , Carotenoides/metabolismo , Chlorophyceae/metabolismo , Xantófilas/metabolismo , Biomasa
12.
Mar Drugs ; 21(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37623739

RESUMEN

The objective of this study was to prepare an angiotensin I-converting enzyme (ACE)-inhibitory peptide from the hydrothermal vent mussel, Gigantidas vrijenhoeki. The G. vrijenhoeki protein was hydrolyzed by various hydrolytic enzymes. The peptic hydrolysate exhibited the highest ACE-inhibitory activity and was fractionated into four molecular weight ranges by ultrafiltration. The <1 kDa fraction exhibited the highest ACE inhibitory activity and was found to have 11 peptide sequences. Among the analyzed peptides, KLLWNGKM exhibited stronger ACE inhibitory activity and an IC50 value of 0.007 µM. To investigate the ACE-inhibitory activity of the analyzed peptides, a molecular docking study was performed. KLLWNGKM exhibited the highest binding energy (-1317.01 kcal/mol), which was mainly attributed to the formation of hydrogen bonds with the ACE active pockets, zinc-binding motif, and zinc ion. These results indicate that G. vrijenhoeki-derived peptides can serve as nutritional and pharmacological candidates for controlling blood pressure.


Asunto(s)
Mytilidae , Peptidil-Dipeptidasa A , Animales , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Zinc
13.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446242

RESUMEN

Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Sargassum , Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación del Acoplamiento Molecular , Sargassum/química , Peptidil-Dipeptidasa A/química , Cloroformo
14.
Mar Drugs ; 21(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504900

RESUMEN

Microalgae are proposed to have powerful applications for human health in the pharmaceutical and food industries. Tetraselmis species (sp.), which are green microalgae, were identified as a source of broad-spectrum health-promoting biological activities. However, the bioactivity of these species has not been elucidated. We aimed to confirm the antioxidant, antiviral, and anti-inflammatory effects of Tetraselmis sp. extract (TEE). TEE showed 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical and hydrogen peroxide scavenging activities and reduced plaque formation in Vero E6 cells infected with vaccinia virus. TEE treatment also significantly inhibited nitric oxide (NO) production and improved cell viability in lipopolysaccharide (LPS)-induced RAW264.7 cells. These anti-inflammatory effects were further analyzed in LPS-induced RAW 264.7 cells and the zebrafish model. Further, TEE reduced induced NO synthase expression and proinflammatory cytokine release, including tumor necrosis factor-α, interleukin-6, and interleukin-1ß, through MAPKs and NF-κB-dependent mechanisms. Further analysis revealed that TEE increased the survival rate and reduced cell death and NO production in an LPS-stimulated zebrafish model. Further, high-performance liquid chromatography revealed a strong presence of the carotenoid lutein in TEE. Overall, the results suggest that lutein-enriched TEE may be a potent antioxidant, antiviral, and anti-inflammatory agent that could be sustainably utilized in industrial applications.


Asunto(s)
Antioxidantes , Luteína , Animales , Ratones , Humanos , Antioxidantes/farmacología , Luteína/farmacología , Luteína/metabolismo , Pez Cebra/metabolismo , Lipopolisacáridos/farmacología , Antivirales/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Células RAW 264.7 , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
15.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511323

RESUMEN

Photodynamic therapy is an alternative approach to treating tumors that utilizes photochemical reactions between a photosensitizer and laser irradiation for the generation of reactive oxygen species. Currently, natural photosensitive compounds are being promised to replace synthetic photosensitizers used in photodynamic therapy because of their low toxicity, lesser side effects, and high solubility in water. Therefore, the present study investigated the anti-cancer efficacy of chlorophyllin-assisted photodynamic therapy on human cervical cancer by inducing apoptotic response through oxidative stress. The chlorophyllin-assisted photodynamic therapy significantly induced cytotoxicity, and the optimal conditions were determined based on the results, including laser irradiation time, laser power density, and chlorophyllin concentration. In addition, reactive oxygen species generation and Annexin V expression level were detected on the photodynamic reaction-treated HeLa cells under the optimized conditions to evaluate apoptosis using a fluorescence microscope. In the Western blotting analysis, the photodynamic therapy group showed the increased protein expression level of the cleaved caspase 8, caspase 9, Bax, and cytochrome C, and the suppressed protein expression level of Bcl-2, pro-caspase 8, and pro-caspase 9. Moreover, the proposed photodynamic therapy downregulated the phosphorylation of AKT1 in the HeLa cells. Therefore, our results suggest that the chlorophyllin-assisted photodynamic therapy has potential as an antitumor therapy for cervical cancer.


Asunto(s)
Fotoquimioterapia , Neoplasias del Cuello Uterino , Femenino , Humanos , Caspasa 9/metabolismo , Caspasa 8/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Fotoquimioterapia/métodos , Apoptosis , Fármacos Fotosensibilizantes/química , Estrés Oxidativo
16.
Food Chem Toxicol ; 177: 113864, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37263571

RESUMEN

Recently, a new mechanism has revealed that gut microbiota plays a pivotal role in metabolizing fructose to acetate that facilitates hepatic lipogenesis. Therefore, our study investigated the role of microbiome on abnormal lipid synthesis in the presence of fructose and identified attenuating effects of Ishige okamurae Celluclast extract (IOCE) against fructose-induced fatty liver. The results indicated that oral administration of IOCE (150 and 300 mg/kg/day for 12 weeks) significantly reduced both gut microbiota-mediated and -non-mediated hepatic lipogenesis simultaneously triggered by fructose metabolism. IOCE reduced hepatic triglyceride accumulation and expression levels of key enzymes for glucolipid metabolism. In addition, IOCE regulated fatty acid synthesis, ß-oxidation, and improved hepatic inflammation. Furthermore, IOCE inhibited direct fructose-to-acetate conversion and altered the compositions of gut microbiota. These findings suggest that IOCE might serve as a potential prebiotic dietary supplement by ameliorating fatty liver through dual regulation of classical lipogenic pathway and gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Metabolismo de los Lípidos , Fructosa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dieta , Hígado , Acetatos/farmacología , Ratones Endogámicos C57BL , Dieta Alta en Grasa
17.
Sci Rep ; 12(1): 21510, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513751

RESUMEN

This study aimed to assess the performance of deep learning (DL) algorithms in the diagnosis of nasal bone fractures on radiographs and compare it with that of experienced radiologists. In this retrospective study, 6713 patients whose nasal radiographs were examined for suspected nasal bone fractures between January 2009 and October 2020 were assessed. Our dataset was randomly split into training (n = 4325), validation (n = 481), and internal test (n = 1250) sets; a separate external dataset (n = 102) was used. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of the DL algorithm and the two radiologists were compared. The AUCs of the DL algorithm for the internal and external test sets were 0.85 (95% CI, 0.83-0.86) and 0.86 (95% CI, 0.78-0.93), respectively, and those of the two radiologists for the external test set were 0.80 (95% CI, 0.73-0.87) and 0.75 (95% CI, 0.68-0.82). The DL algorithm therefore significantly exceeded radiologist 2 (P = 0.021) but did not significantly differ from radiologist 1 (P = 0.142). The sensitivity and specificity of the DL algorithm were 83.1% (95% CI, 71.2-93.2%) and 83.7% (95% CI, 69.8-93.0%), respectively. Our DL algorithm performs comparably to experienced radiologists in diagnosing nasal bone fractures on radiographs.


Asunto(s)
Aprendizaje Profundo , Fracturas Óseas , Humanos , Estudios Retrospectivos , Redes Neurales de la Computación , Radiografía , Fracturas Óseas/diagnóstico por imagen
18.
Nutrients ; 14(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36145090

RESUMEN

Spirulina maxima is a marine microalga that has been promoted worldwide as a super food. This study was conducted to evaluate its ability to improve memory in the older adults using Spirulina maxima 70% ethanol extract (SM70EE). This randomized, double-blind, placebo-controlled clinical trial comprised 80 volunteers recruited from Jeonbuk National University Hospital in Jeonju, Republic of Korea, who were randomly assigned to two groups. The participants received either 1 g/day of SM70EE or a placebo without otherwise changing their diet or physical activity. The participants were examined at baseline and after a 12-week interval to determine whether there were changes in their results for visual learning, visual working memory, and verbal learning tests from the Korean version of the Montreal Cognitive Assessment, brain-derived neurotrophic factor and beta-amyloid levels, and total antioxidant capacity. Compared to the placebo group, the treatment group showed a significant improvement in visual learning and visual working memory test results and enhanced vocabulary. SM70EE use was shown to improve memory, with no adverse effects. Its efficacy in alleviating Alzheimer's disease symptoms was verified for the first time through this clinical trial. SM70EE could play a role in the management of patients with dementia. This trial is registered with registration number of clinical research information service (CRIS: KCT0006161).


Asunto(s)
Disfunción Cognitiva , Spirulina , Anciano , Antioxidantes/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva/tratamiento farmacológico , Método Doble Ciego , Etanol , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
19.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135752

RESUMEN

Polysiphonia morrowii is a well-known red alga that has promising pharmacological characteristics. The current study evaluates the protective effect of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) isolated from P. morrowii on tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated inflammation and skin barrier deterioration in HaCaT keratinocytes. The anti-inflammatory effect of BDB in TNF-α/IFN-γ-stimulated HaCaT keratinocytes is evaluated by investigating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, inflammatory cytokines, and chemokines. Further, the interaction between BDB and the skin barrier functions in stimulated HaCaT keratinocytes is investigated. The findings of the study reveal that BDB dose-dependently increases cell viability while decreasing intracellular reactive oxygen species (ROS) production. BDB downregulates the expression of inflammatory cytokines, interleukin (IL)-6, -8, -13, IFN-γ, TNF-α, and chemokines, Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cells expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC) by modulating the MAPK and NF-κB signaling pathways in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. Furthermore, BDB increases the production of skin hydration proteins and tight junction proteins in stimulated HaCaT keratinocytes by preserving skin moisturization and tight junction stability. These findings imply that BDB exhibits a protective ability against inflammation and deterioration of skin barrier via suppressing the expression of inflammatory signaling in TNF-α/IFN-γ-stimulated HaCaT keratinocytes.


Asunto(s)
Benzaldehídos , Queratinocitos , Rhodophyta , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Benzaldehídos/farmacología , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucinas/metabolismo , Queratinocitos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rhodophyta/química , Factor de Transcripción STAT1/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Int J Biol Macromol ; 218: 102-114, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863660

RESUMEN

Methodologies for synthesizing drug-loaded alginate nanocapsules were optimized and indomethacin and phloroglucinol loading capacities were studied. Their biological effects were studied for ameliorating fine dust (FD) induced detrimental effects in keratinocytes. The 1 % alginate to oil phase ratio of 1:20 was the optimal parameter for water in oil emulsification. The oil phase was optimized to contain sunflower oil: span 80 ratios of 17:3. Nanocapsule drug encapsulation efficiencies were 36.91 ± 5.56 and 32.41 ± 4.05 % respectively for phloroglucinol (EG2P) and indomethacin (EG2I) while the loading capacities were 25.28 ± 3.36 and 23.15 ± 2.84 %. Dried nanocapsules indicated a 40-140 nm diameter range while their hydrodynamic diameter was 989.69 nm at pH 7.0. Nanocapsules swelling was pH-dependent and in releasing media of pH values 4.5, 7.4, and 8.5, the drug release indicated a complex mechanism of swelling, diffusion, and erosion while at pH 2.0 the drug release followed the non-Fickian release. EG2P and EG2I treatment dose-dependently lowered FD-induced intracellular ROS production, apoptosis and inflammatory responses mediated through the NF-κB pathway in FD stimulated HaCaT keratinocytes and reduced epidermal barrier degradation. Further research could investigate the use of this technique in formulating cosmeceuticals containing drug-loaded alginate nanocapsules for achieving controlled release.


Asunto(s)
Nanocápsulas , Alginatos , Polvo , Indometacina , Queratinocitos , Tamaño de la Partícula , Floroglucinol , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...