Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pain ; 165(6): 1336-1347, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38739766

RESUMEN

ABSTRACT: Evidence from previous studies supports the concept that spinal cord injury (SCI)-induced neuropathic pain (NP) has its neural roots in the peripheral nervous system. There is uncertainty about how and to which degree mechanoreceptors contribute. Sensorimotor activation-based interventions (eg, treadmill training) have been shown to reduce NP after experimental SCI, suggesting transmission of pain-alleviating signals through mechanoreceptors. The aim of the present study was to understand the contribution of mechanoreceptors with respect to mechanical allodynia in a moderate mouse contusion SCI model. After genetic ablation of tropomyosin receptor kinase B expressing mechanoreceptors before SCI, mechanical allodynia was reduced. The identical genetic ablation after SCI did not yield any change in pain behavior. Peptidergic nociceptor sprouting into lamina III/IV below injury level as a consequence of SCI was not altered by either mechanoreceptor ablation. However, skin-nerve preparations of contusion SCI mice 7 days after injury yielded hyperexcitability in nociceptors, not in mechanoreceptors, which makes a substantial direct contribution of mechanoreceptors to NP maintenance unlikely. Complementing animal data, quantitative sensory testing in human SCI subjects indicated reduced mechanical pain thresholds, whereas the mechanical detection threshold was not altered. Taken together, early mechanoreceptor ablation modulates pain behavior, most likely through indirect mechanisms. Hyperexcitable nociceptors seem to be the main drivers of SCI-induced NP. Future studies need to focus on injury-derived factors triggering early-onset nociceptor hyperexcitability, which could serve as targets for more effective therapeutic interventions.


Asunto(s)
Modelos Animales de Enfermedad , Hiperalgesia , Mecanorreceptores , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Ratones , Hiperalgesia/fisiopatología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiología , Masculino , Humanos , Umbral del Dolor/fisiología , Femenino , Dimensión del Dolor , Ratones Transgénicos , Neuralgia/etiología , Neuralgia/metabolismo , Neuralgia/fisiopatología
2.
Cell Mol Life Sci ; 81(1): 55, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261097

RESUMEN

To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.


Asunto(s)
MicroARNs , Proteínas Ribosómicas , Animales , Humanos , Ratones , Acetilcolinesterasa , MicroARNs/genética , Primates , Proteínas Ribosómicas/genética
3.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37989592

RESUMEN

Sensory systems are shaped in postnatal life by the refinement of synaptic connectivity. In the dorsal horn of the spinal cord, somatosensory circuits undergo postnatal activity-dependent reorganization, including the refinement of primary afferent A-fiber terminals from superficial to deeper spinal dorsal horn laminae which is accompanied by decreases in cutaneous sensitivity. Here, we show in the mouse that microglia, the resident immune cells in the CNS, phagocytose A-fiber terminals in superficial laminae in the first weeks of life. Genetic perturbation of microglial engulfment during the initial postnatal period in either sex prevents the normal process of A-fiber refinement and elimination, resulting in an altered sensitivity of dorsal horn cells to dynamic tactile cutaneous stimulation, and behavioral hypersensitivity to dynamic touch. Thus, functional microglia are necessary for the normal postnatal development of dorsal horn sensory circuits. In the absence of microglial engulfment, superfluous A-fiber projections remain in the dorsal horn, and the balance of sensory connectivity is disrupted, leading to lifelong hypersensitivity to dynamic touch.


Asunto(s)
Percepción del Tacto , Tacto , Animales , Ratones , Microglía , Asta Dorsal de la Médula Espinal , Fibras Nerviosas Mielínicas/fisiología , Médula Espinal/fisiología , Células del Asta Posterior
4.
Nat Commun ; 14(1): 1899, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019973

RESUMEN

Mechanically silent nociceptors are sensory afferents that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli during inflammation. Using RNA-sequencing and quantitative RT-PCR we demonstrate that inflammation upregulates the expression of the transmembrane protein TMEM100 in silent nociceptors and electrophysiology revealed that over-expression of TMEM100 is required and sufficient to un-silence silent nociceptors in mice. Moreover, we show that mice lacking TMEM100 do not develop secondary mechanical hypersensitivity-i.e., pain hypersensitivity that spreads beyond the site of inflammation-during knee joint inflammation and that AAV-mediated overexpression of TMEM100 in articular afferents in the absence of inflammation is sufficient to induce mechanical hypersensitivity in remote skin regions without causing knee joint pain. Thus, our work identifies TMEM100 as a key regulator of silent nociceptor un-silencing and reveals a physiological role for this hitherto enigmatic afferent subclass in triggering spatially remote secondary mechanical hypersensitivity during inflammation.


Asunto(s)
Nociceptores , Dolor , Animales , Ratones , Inflamación/metabolismo , Articulación de la Rodilla , Nociceptores/metabolismo , Dolor/metabolismo , Piel/metabolismo
5.
J Cell Biol ; 222(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36571579

RESUMEN

Functional membrane proteins in the plasma membrane are suggested to have specific membrane environments that play important roles to maintain and regulate their function. However, the local membrane environments of membrane proteins remain largely unexplored due to the lack of available techniques. We have developed a method to probe the local membrane environment surrounding membrane proteins in the plasma membrane by covalently tethering a solvatochromic, environment-sensitive dye, Nile Red, to a GPI-anchored protein and the insulin receptor through a flexible linker. The fluidity of the membrane environment of the GPI-anchored protein depended upon the saturation of the acyl chains of the lipid anchor. The local environment of the insulin receptor was distinct from the average plasma membrane fluidity and was quite dynamic and heterogeneous. Upon addition of insulin, the local membrane environment surrounding the receptor specifically increased in fluidity in an insulin receptor-kinase dependent manner and on the distance between the dye and the receptor.


Asunto(s)
Membrana Celular , Proteínas de la Membrana , Receptor de Insulina , Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas de la Membrana/metabolismo , Receptor de Insulina/metabolismo , Técnicas de Sonda Molecular
6.
Cell Rep ; 38(3): 110260, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045284

RESUMEN

In their Matters Arising article, McMullan et al. (2022) offer alternative explanations for the phenotypes we observed upon stimulation and ablation of TrkCCreERT2-positive neurons in mice. Their interpretations are focused on two aspects: first, whether the vasoconstriction we observed upon activation of TrkCCreERT2 neurons is really mediated by TrkC/TH-positive neurons, or whether it might stem from stimulation of somatic nociceptors that also express TrkC; and second, whether the lethality observed after ablation of TrkCCreERT2 neurons might be a result of ablation of vagal afferents and not TrkC/TH neurons located in the spinal ganglia. Central to both of these concerns is the expression and recombination efficiency of the TrkCCreERT2 transgene in these other cell types. This Matters Arising Response paper addresses the McMullan et al. (2022) Matters Arising paper, published concurrently in Cell Reports.


Asunto(s)
Ganglios Espinales , Neuronas , Animales , Homeostasis , Ratones , Proteínas Tirosina Quinasas Receptoras , Recombinación Genética
7.
Cell Rep ; 35(9): 109191, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077727

RESUMEN

The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.


Asunto(s)
Presión Sanguínea/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Conducta Animal , Fluoresceína/metabolismo , Ganglios Espinales/fisiología , Frecuencia Cardíaca/fisiología , Ratones Transgénicos , Receptor trkC/metabolismo
8.
Pain ; 162(5): 1334-1351, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33492037

RESUMEN

ABSTRACT: Diabetes is a leading cause of peripheral neuropathy (diabetic peripheral neuropathy, DPN), and uncontrolled long-lasting hyperglycemia leads to severe complications. A major proportion of diabetics develop excruciating pain with a variable course. Mechanisms leading to painful DPN are not completely understood and treatment options limited. We hypothesized that epigenetic modulation at the level of microRNA (miRNA) expression triggered by metabolic imbalance and nerve damage regulates the course of pain development. We used clinically relevant preclinical models, genome-wide screening, in silico analyses, cellular assays, miRNA fluorescent in situ hybridization, in vivo molecular manipulations, and behavioral analyses in the current study. We identified miRNAs and their targets that critically impact on nociceptive hypersensitivity in painful DPN. Our analyses identify miR-33 and miR-380 expressed in nociceptive neurons as critical denominators of diabetic pain and miR-124-1 as a mediator of physiological nociception. Our comprehensive analyses on the putative mRNA targets for miR-33 or miR-124-1 identified a set of mRNAs that are regulated after miR-33 or miR-124-1 overexpression in dorsal root ganglia in vivo. Our results shed light on the regulation of DPN pathophysiology and implicate specific miRNAs as novel therapeutic targets for treating painful DPN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , MicroARNs , Neuropatías Diabéticas/genética , Ganglios Espinales , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , Células Receptoras Sensoriales
9.
Arthritis Rheumatol ; 72(10): 1749-1758, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32418284

RESUMEN

OBJECTIVE: Joint pain is the major clinical symptom of arthritis that affects millions of people. Controlling the excitability of knee-innervating dorsal root ganglion (DRG) neurons (knee neurons) could potentially provide pain relief. We undertook this study to evaluate whether the newly engineered adeno-associated virus (AAV) serotype, AAV-PHP.S, can deliver functional artificial receptors to control knee neuron excitability following intraarticular knee injection. METHODS: The AAV-PHP.S virus, packaged with dTomato fluorescent protein and either excitatory (Gq ) or inhibitory (Gi ) designer receptors exclusively activated by designer drugs (DREADDs), was injected into the knee joints of adult mice. Labeling of DRG neurons with AAV-PHP.S from the knee was evaluated using immunohistochemistry. The functionality of Gq - and Gi -DREADDs was evaluated using whole-cell patch clamp electrophysiology on acutely cultured DRG neurons. Pain behavior in mice was assessed using a digging assay, dynamic weight bearing, and rotarod performance, before and after intraperitoneal administration of the DREADD activator, Compound 21. RESULTS: We showed that AAV-PHP.S can deliver functional genes into ~7% of lumbar DRG neurons when injected into the knee joint in a similar manner to the well-established retrograde tracer, fast blue. Short-term activation of AAV-PHP.S-delivered Gq -DREADD increased excitability of knee neurons in vitro (P = 0.02 by unpaired t-test), without inducing overt pain in mice when activated in vivo. By contrast, in vivo Gi -DREADD activation alleviated digging deficits induced by Freund's complete adjuvant-mediated knee inflammation (P = 0.0002 by repeated-measures analysis of variance [ANOVA] followed by Holm-Sidak multiple comparisons test). A concomitant decrease in knee neuron excitability was observed in vitro (P = 0.005 by ANOVA followed by Holm-Sidak multiple comparisons test). CONCLUSION: We describe an AAV-mediated chemogenetic approach to specifically control joint pain, which may be utilized in translational arthritic pain research.


Asunto(s)
Ganglios Espinales/metabolismo , Terapia Genética/métodos , Inflamación/terapia , Neuronas/metabolismo , Manejo del Dolor/métodos , Dolor/metabolismo , Animales , Dependovirus , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Articulación de la Rodilla/metabolismo , Ratones
10.
Sci Rep ; 9(1): 19214, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844114

RESUMEN

Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand's cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases.


Asunto(s)
Proteínas/genética , Proteínas/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Dependovirus/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Queratinocitos/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piel/metabolismo
11.
J Neurosci ; 39(49): 9702-9715, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685654

RESUMEN

Nerve growth factor (NGF) is a key mediator of nociception, acting during the development and differentiation of dorsal root ganglion (DRG) neurons, and on adult DRG neuron sensitization to painful stimuli. NGF also has central actions in the brain, where it regulates the phenotypic maintenance of cholinergic neurons. The physiological function of NGF as a pain mediator is altered in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), caused by the 661C>T transition in the Ngf gene, resulting in the R100W missense mutation in mature NGF. Homozygous HSAN V patients present with congenital pain insensitivity, but are cognitively normal. This led us to hypothesize that the R100W mutation may differentially affect the central and peripheral actions of NGF. To test this hypothesis and provide a mechanistic basis to the HSAN V phenotype, we generated transgenic mice harboring the human 661C>T mutation in the Ngf gene and studied both males and females. We demonstrate that heterozygous NGFR100W/wt mice display impaired nociception. DRG neurons of NGFR100W/wt mice are morphologically normal, with no alteration in the different DRG subpopulations, whereas skin innervation is reduced. The NGFR100W protein has reduced capability to activate pain-specific signaling, paralleling its reduced ability to induce mechanical allodynia. Surprisingly, however, NGFR100W/wt mice, unlike heterozygous mNGF+/- mice, show no learning or memory deficits, despite a reduction in secretion and brain levels of NGF. The results exclude haploinsufficiency of NGF as a mechanistic cause for heterozygous HSAN V mice and demonstrate a specific effect of the R100W mutation on nociception.SIGNIFICANCE STATEMENT The R100W mutation in nerve growth factor (NGF) causes Hereditary Sensory and Autonomic Neuropathy type V, a rare disease characterized by impaired nociception, even in apparently clinically silent heterozygotes. For the first time, we generated and characterized heterozygous knock-in mice carrying the human R100W-mutated allele (NGFR100W/wt). Mutant mice have normal nociceptor populations, which, however, display decreased activation of pain transduction pathways. NGFR100W interferes with peripheral and central NGF bioavailability, but this does not impact on CNS function, as demonstrated by normal learning and memory, in contrast with heterozygous NGF knock-out mice. Thus, a point mutation allows neurotrophic and pronociceptive functions of NGF to be split, with interesting implications for the treatment of chronic pain.


Asunto(s)
Cognición , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Mutación/genética , Factor de Crecimiento Nervioso/genética , Nocicepción , Animales , Conducta Animal , Femenino , Ganglios Espinales/patología , Técnicas de Sustitución del Gen , Neuropatías Hereditarias Sensoriales y Autónomas/psicología , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación Missense/genética , Dimensión del Dolor , Percepción del Dolor , Desempeño Psicomotor , Ratas , Ratas Wistar , Piel/inervación
12.
Nat Protoc ; 14(11): 3101-3125, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31605098

RESUMEN

Antibody-based diagnostic and therapeutic agents play a substantial role in medicine, especially in cancer management. A variety of chemical, genetic and enzymatic site-specific conjugation methods have been developed for equipping antibodies with effector molecules to generate homogeneous antibody conjugates with tailored properties. However, most of these methods are relatively complicated and expensive and require several reaction steps. Self-labeling proteins such as the SNAP-tag are an innovative solution for addressing these challenges. The SNAP-tag is a modified version of the human DNA repair enzyme alkylguanine-DNA alkyltransferase (AGT), which reacts specifically with O(6)-benzylguanine (BG)-modified molecules via irreversible transfer of an alkyl group to a cysteine residue. It provides a simple, controlled and robust site-specific method for labeling antibodies with different synthetic small effector molecules. Fusing a SNAP-tag to recombinant antibodies allows efficient conjugation of BG-containing substrates by autocatalytic, irreversible transfer of the alkyl group to a cysteine residue in the enzyme's active site under physiological conditions and with a 1:1 stoichiometry. This protocol describes how to generate site-specific SNAP-tag single-chain antibody fragment (scFv) conjugates with different types of BG-modified effector molecules. A specific example is included for the design and production of an scFv-photosensitizer conjugate and its characterization as an immuno-theranostic agent. This protocol includes DNA sequences encoding scFV-SNAP-tag fusion proteins and outlines strategies for expression, purification and testing of the resulting scFv-SNAP-tag-based immuno-conjugates. All experiments can be performed by a graduate-level researcher with basic molecular biology skills within an 8-week time frame.


Asunto(s)
Inmunoconjugados/química , Anticuerpos de Cadena Única/química , Línea Celular , Colorantes Fluorescentes/química , Humanos , O(6)-Metilguanina-ADN Metiltransferasa/química , Proteínas Recombinantes/química , Coloración y Etiquetado
13.
Pain ; 160(10): 2305-2315, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31365468

RESUMEN

Nerve growth factor (NGF) and its receptors TrkA and p75 play a key role in the development and function of peripheral nociceptive neurons. Here, we describe novel technology to selectively photoablate TrkA-positive nociceptors through delivery of a phototoxic agent coupled to an engineered NGF ligand and subsequent near-infrared illumination. We demonstrate that this approach allows for on demand and localized reversal of pain behaviors in mouse models of acute, inflammatory, neuropathic, and joint pain. To target peripheral nociceptors, we generated a SNAP-tagged NGF derivative NGF that binds to TrkA/p75 receptors but does not provoke signaling in TrkA-positive cells or elicit pain behaviors in mice. NGF was coupled to the photosensitizer IRDye700DX phthalocyanine (IR700) and injected subcutaneously. After near-infrared illumination of the injected area, behavioral responses to nociceptive mechanical and sustained thermal stimuli, but not innocuous stimuli, were substantially reduced. Similarly, in models of inflammatory, osteoarthritic, and neuropathic pain, mechanical hypersensitivity was abolished for 3 weeks after a single treatment regime. We demonstrate that this loss of pain behavior coincides with the retraction of neurons from the skin which then reinnervate the epidermis after 3 weeks corresponding with the return of mechanical hypersensitivity. Thus NGF-mediated photoablation is a minimally invasive approach to reversibly silence nociceptor input from the periphery, and control pain and hypersensitivity to mechanical stimuli.


Asunto(s)
Técnicas de Ablación/métodos , Factor de Crecimiento Nervioso/administración & dosificación , Neuralgia/terapia , Nociceptores/efectos de los fármacos , Dimensión del Dolor/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuralgia/fisiopatología , Nociceptores/fisiología , Células PC12 , Ratas
14.
Proc Natl Acad Sci U S A ; 116(28): 14260-14269, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235572

RESUMEN

Piezo channels are mechanically activated ion channels that confer mechanosensitivity to a variety of different cell types. Piezos oligomerize as propeller-shaped homotrimers that are thought to locally curve the membrane into spherical domes that project into the cell. While several studies have identified domains and amino acids that control important properties such as ion permeability and selectivity as well as inactivation kinetics and voltage sensitivity, only little is known about intraprotein interactions that govern mechanosensitivity-the most unique feature of PIEZOs. Here we used site-directed mutagenesis and patch-clamp recordings to investigate the mechanogating mechanism of PIEZO2. We demonstrate that charged amino acids at the interface between the beam domain-i.e., a long α-helix that protrudes from the intracellular side of the "propeller" blade toward the inner vestibule of the channel-and the C-terminal domain (CTD) as well as hydrophobic interactions between the highly conserved Y2807 of the CTD and pore-lining helices are required to ensure normal mechanosensitivity of PIEZO2. Moreover, single-channel recordings indicate that a previously unrecognized intrinsically disordered domain located adjacent to the beam acts as a cytosolic plug that limits ion permeation possibly by clogging the inner vestibule of both PIEZO1 and PIEZO2. Thus, we have identified several intraprotein domain interfaces that control the mechanical activation of PIEZO1 and PIEZO2 and which might thus serve as promising targets for drugs that modulate the mechanosensitivity of Piezo channels.

15.
Nat Biomed Eng ; 3(2): 114-125, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30944432

RESUMEN

Itch-a major symptom of many chronic skin diseases-can exacerbate inflammation by provoking scratching and subsequent skin damage. Here, we show that activation, via near infrared illumination, of a phototoxic agent that selectively targets itch-sensing cells can reduce itch-associated behaviours in mice. We generated a SNAP-tagged interleukin-31 (IL-31) ligand derivative (IL-31K138A-SNAP) that selectively binds receptors on itch-associated cells, without evoking IL-31-receptor signalling or scratching, and conjugated it to the photosensitizer IRDye 700DX phthalocyanine. Subcutaneous injection of IL-31K138A-SNAP-IR700 in mice followed by near infrared illumination resulted in the long-term reversal of the scratching behaviour evoked by the pruritogenic IL-31, an effect that was associated with the selective retraction of itch-sensing neurons in the skin. We also show that a topical preparation of IL-31K138A-SNAP-IR700 reversed the behavioural and dermatological indicators of disease in mouse models of atopic dermatitis and of the genetic skin disease familial primary localized cutaneous amyloidosis. Targeted photoablation may enable itch control for the treatment of inflammatory skin diseases.


Asunto(s)
Conducta Animal , Epidermis/inervación , Interleucinas/uso terapéutico , Luz , Prurito/patología , Prurito/terapia , Células Receptoras Sensoriales/patología , Enfermedad Aguda , Amiloidosis Familiar/patología , Animales , Movimiento Celular , Células Dendríticas/patología , Dermatitis Atópica/patología , Dermatitis Atópica/prevención & control , Modelos Animales de Enfermedad , Epidermis/patología , Indoles/química , Queratinocitos/patología , Ratones Endogámicos C57BL , Psoriasis/patología , Enfermedades Cutáneas Genéticas/patología
16.
Angew Chem Int Ed Engl ; 58(8): 2341-2344, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30569539

RESUMEN

Optical monitoring of neuronal voltage using fluorescent indicators is a powerful approach for the interrogation of the cellular and molecular logic of the nervous system. Herein, a semisynthetic tethered voltage indicator (STeVI1) based upon nile red is described that displays voltage sensitivity when genetically targeted to neuronal membranes. This environmentally sensitive probe allows for wash-free imaging and faithfully detects supra- and sub-threshold activity in neurons.


Asunto(s)
Colorantes Fluorescentes/química , Neuronas/metabolismo , Imagen Óptica , Oxazinas/química , Células HEK293 , Humanos , Estructura Molecular , Neuronas/citología
17.
Nat Commun ; 9(1): 1640, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691410

RESUMEN

Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hiperalgesia/terapia , Terapia por Láser , Glicoproteínas de Membrana/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas Tirosina Quinasas/metabolismo , Células Receptoras Sensoriales/efectos de la radiación , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Femenino , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Ligandos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Neuralgia/genética , Neuralgia/fisiopatología , Proteínas Tirosina Quinasas/genética , Células Receptoras Sensoriales/metabolismo , Tacto/efectos de la radiación
18.
Cell Rep ; 21(11): 3102-3115, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241539

RESUMEN

Mechanical and thermal hyperalgesia (pain hypersensitivity) are cardinal signs of inflammation. Although the mechanism underlying thermal hyperalgesia is well understood, the cellular and molecular basis of mechanical hyperalgesia is poorly described. Here, we have identified a subset of peptidergic C-fiber nociceptors that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli when exposed to the inflammatory mediator nerve growth factor (NGF). Strikingly, NGF did not affect mechanosensitivity of other nociceptors. We show that these mechanoinsensitive "silent" nociceptors are characterized by the expression of the nicotinic acetylcholine receptor subunit alpha-3 (CHRNA3) and that the mechanically gated ion channel PIEZO2 mediates NGF-induced mechanosensitivity in these neurons. Retrograde tracing revealed that CHRNA3+ nociceptors account for ∼50% of all peptidergic nociceptive afferents innervating visceral organs and deep somatic tissues. Hence, our data suggest that NGF-induced "un-silencing" of CHRNA3+ nociceptors significantly contributes to the development of mechanical hyperalgesia during inflammation.


Asunto(s)
Hiperalgesia/genética , Canales Iónicos/genética , Mecanotransducción Celular , Factor de Crecimiento Nervioso/farmacología , Nociceptores/efectos de los fármacos , Receptores Nicotínicos/genética , Animales , Fenómenos Biomecánicos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Canales Iónicos/metabolismo , Ratones , Ratones Transgénicos , Nociceptores/citología , Nociceptores/metabolismo , Dolor/genética , Dolor/metabolismo , Dolor/fisiopatología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Receptores Nicotínicos/metabolismo
19.
Nat Commun ; 8(1): 1778, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176651

RESUMEN

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Asunto(s)
Exosomas/metabolismo , Ganglios Espinales/metabolismo , Macrófagos/inmunología , MicroARNs/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axones/metabolismo , Exosomas/genética , Ganglios Espinales/citología , Ganglios Espinales/lesiones , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neuralgia/genética , Neuralgia/inmunología , Fagocitosis , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
20.
Neuron ; 93(1): 179-193, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27989460

RESUMEN

Painful mechanical stimuli activate multiple peripheral sensory afferent subtypes simultaneously, including nociceptors and low-threshold mechanoreceptors (LTMRs). Using an optogenetic approach, we demonstrate that LTMRs do not solely serve as touch receptors but also play an important role in acute pain signaling. We show that selective activation of neuropeptide Y receptor-2-expressing (Npy2r) myelinated A-fiber nociceptors evokes abnormally exacerbated pain, which is alleviated by concurrent activation of LTMRs in a frequency-dependent manner. We further show that spatial summation of single action potentials from multiple NPY2R-positive afferents is sufficient to trigger nocifensive paw withdrawal, but additional simultaneous sensory input from LTMRs is required for normal well-coordinated execution of this reflex. Thus, our results show that combinatorial coding of noxious and tactile sensory input is required for normal acute mechanical pain signaling. Additionally, we established a causal link between precisely defined neural activity in functionally identified sensory neuron subpopulations and nocifensive behavior and pain.


Asunto(s)
Potenciales de Acción , Dolor Agudo/genética , Mecanorreceptores/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/metabolismo , Nocicepción/fisiología , Nociceptores/metabolismo , Sumación de Potenciales Postsinápticos , Animales , Conducta Animal , Ganglios Espinales/citología , Inmunohistoquímica , Ratones , Fibras Nerviosas Mielínicas/fisiología , Dolor Nociceptivo , Optogenética , Dolor , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Reflejo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tacto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...