RESUMEN
The transcriptomic signatures that shape responses of innate lymphoid cells (ILCs) have been well characterised, however post-transcriptional mechanisms which regulate their development and activity remain poorly understood. We demonstrate that ILC groups of the intestinal lamina propria express mature forms of microRNA-142 (miR-142), an evolutionarily conserved microRNA family with several non-redundant regulatory roles within the immune system. Germline Mir142 deletion alters intestinal ILC compositions, resulting in the absence of T-bet+ populations and significant defects in the cellularity and phenotypes of ILC3 subsets including CCR6+ LTi-like ILC3s. These effects were associated with decreased pathology in an innate-immune cell driven model of colitis. Furthermore, Mir142-/- mice demonstrate defective development of gut-associated lymphoid tissues, including a complete absence of mature Peyer's patches. Conditional deletion of Mir142 in ILC3s (RorcΔMir142) supported cell-intrinsic roles for these microRNAs in establishing or maintaining cellularity and functions of LTi-like ILC3s in intestinal associated tissues. RNAseq analysis revealed several target genes and biological pathways potentially regulated by miR-142 microRNAs in these cells. Finally, lack of Mir142 in ILC3 led to elevated IL-17A production. These data broaden our understanding of immune system roles of miR-142 microRNAs, identifying these molecules as critical post-transcriptional regulators of ILC3s and intestinal mucosal immunity.
RESUMEN
Eosinophils are involved in host protection against multicellular organisms. However, their recruitment to the mesenteric lymph node (mLN) during type 2 immunity is understudied. Our results demonstrate that eosinophil association with lymphoid stromal niches constructed by fibroblastic reticular cells (FRCs) and lymphatic endothelial cells is diminished in mice selectively lacking interleukin (IL)-4Rα or lymphotoxin-ß (LTß) expression on B cells. Furthermore, eosinophil survival, activation, and enhanced Il1rl1 receptor expression are driven by stromal cell and B cell dialogue. The ligation of lymphotoxin-ß receptor (LTßR) on FRCs improves eosinophil survival and significantly augments IL-33 expression and eosinophil homing to the mLN, thus confirming the significance of lymphotoxin signaling for granulocyte recruitment. Eosinophil-deficient ΔdblGATA-1 mice show diminished mLN expansion, reduced interfollicular region (IFR) alarmin expression, and delayed helminth clearance, elucidating their importance in type 2 immunity. These findings provide insight into dialogue between stromal cells and B cells, which govern mLN eosinophilia, and the relevance of these mechanisms during type 2 immunity.
Asunto(s)
Linfocitos B , Eosinófilos , Interleucina-33 , Células del Estroma , Animales , Eosinófilos/inmunología , Eosinófilos/metabolismo , Células del Estroma/metabolismo , Células del Estroma/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Interleucina-33/metabolismo , Ratones , Receptor beta de Linfotoxina/metabolismo , Ratones Endogámicos C57BL , Ganglios Linfáticos/inmunología , Comunicación Celular , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Transducción de Señal , Receptores de Superficie CelularRESUMEN
Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.
Asunto(s)
Plasticidad de la Célula , Interleucina-17 , Periodontitis , Células Th17 , Células Th17/inmunología , Animales , Periodontitis/inmunología , Periodontitis/patología , Plasticidad de la Célula/inmunología , Interleucina-17/metabolismo , Interleucina-17/inmunología , Ratones , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Células T Auxiliares Foliculares/inmunología , Encía/inmunología , Encía/patología , Inmunoglobulina G/inmunología , Pérdida de Hueso Alveolar/inmunología , Pérdida de Hueso Alveolar/patologíaRESUMEN
Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.
Asunto(s)
Internado y Residencia , Neoplasias , Humanos , Perfilación de la Expresión Génica , Células Asesinas Naturales , Transcriptoma , Microambiente TumoralRESUMEN
Type-3 innate lymphoid cells (ILC3) respond to localized environmental cues to regulate homeostasis and orchestrate immunity in the intestine. The intestinal epithelium is an important upstream regulator and downstream target of ILC3 signaling, however, the complexity of mucosal tissues can hinder efforts to define specific interactions between these two compartments. Here, we employ a reductionist co-culture system of murine epithelial small intestinal organoids (SIO) with ILC3 to uncover bi-directional signaling mechanisms that underlie intestinal homeostasis. We report that ILC3 induce global transcriptional changes in intestinal epithelial cells, driving the enrichment of secretory goblet cell signatures. We find that SIO enriched for goblet cells promote NKp46+ ILC3 and interleukin (IL)-22 expression, which can feedback to induce IL-22-mediated epithelial transcriptional signatures. However, we show that epithelial regulation of ILC3 in this system is contact-dependent and demonstrate a role for epithelial Delta-Like-Canonical-Notch-Ligand (Dll) in driving IL-22 production by ILC3, via subset-specific Notch1-mediated activation of T-bet+ ILC3. Finally, by interfering with Notch ligand-receptor dynamics, ILC3 appear to upregulate epithelial Atoh1 to skew secretory lineage determination in SIO-ILC3 co-cultures. This research outlines two complimentary bi-directional signaling modules between the intestinal epithelium and ILC3, which may be relevant in intestinal homeostasis and disease.
Asunto(s)
Interleucina-22 , Linfocitos , Ratones , Animales , Inmunidad Innata , Ligandos , Mucosa Intestinal , Receptores Notch/metabolismoRESUMEN
Innate lymphoid cells (ILCs) are tissue-resident effector cells with roles in tissue homeostasis, protective immunity, and inflammatory disease. Group 3 ILCs (ILC3s) are classically defined by the master transcription factor RORγt. However, ILC3 can be further subdivided into subsets that share type 3 effector modules that exhibit significant ontological, transcriptional, phenotypic, and functional heterogeneity. Notably lymphoid tissue inducer (LTi)-like ILC3s mediate effector functions not typically associated with other RORγt-expressing lymphocytes, suggesting that additional transcription factors contribute to dictate ILC3 subset phenotypes. Here, we identify Bcl6 as a subset-defining transcription factor of LTi-like ILC3s in mice and humans. Deletion of Bcl6 results in dysregulation of the LTi-like ILC3 transcriptional program and markedly enhances expression of interleukin-17A (IL-17A) and IL-17F in LTi-like ILC3s in a manner in part dependent upon the commensal microbiota-and associated with worsened inflammation in a model of colitis. Together, these findings redefine our understanding of ILC3 subset biology.
Asunto(s)
Linfocitos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Animales , Humanos , Ratones , Inmunidad Innata , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismoRESUMEN
The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.
RESUMEN
Group 3 innate lymphoid cells (ILC3) are potent effector cells with critical roles in enforcing immunity, barrier integrity and tissue homeostasis along the gastrointestinal tract. ILC3 are considered primarily tissue-resident cells, seeding the gastrointestinal tract during embryonic stages and early life. However, the mechanisms through which mature ILC3 are maintained within adult tissues are poorly understood. Here, we report that lymphoid tissue-inducer-like (LTi-like) ILC3 exhibit minimal turnover in the healthy adult intestinal tract, persist for extended periods of time, and display a quiescent phenotype. Strikingly, during enteric bacterial infection LTi-like ILC3 also exhibit negligible hematopoietic replenishment and remain non-proliferative, despite robustly producing cytokines. Survival of LTi-like ILC3 was found to be dependent upon the balance between the metabolic activity required to drive effector function and anti-apoptotic programs. Notably, the pro-survival protein B-cell lymphoma-2 (Bcl-2) was required for the survival of LTi-like ILC3 ex vivo but was rendered partially dispensable if mitochondrial respiration was inhibited. Together we demonstrate LTi-like ILC3 are a tissue-resident, quiescent population that persist independently of hematopoietic replenishment to survive within the intestinal microenvironment.
Asunto(s)
Inmunidad Innata , Linfocitos , Tejido Linfoide/metabolismo , Citocinas/metabolismo , FenotipoRESUMEN
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Asunto(s)
Tejido Adiposo , Tracto Gastrointestinal , Humanos , Inflamación , HígadoRESUMEN
The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.
Asunto(s)
Filariasis , Filarioidea , Infecciones por Nematodos , Ratones , Animales , Filarioidea/fisiología , Células Th2 , Monocitos , Cavidad Pleural , Ratones Endogámicos C57BL , Macrófagos/fisiología , Diferenciación Celular , Ratones Endogámicos BALB CRESUMEN
Immune development is profoundly influenced by vertically transferred cues. However, little is known about how maternal innate-like lymphocytes regulate offspring immunity. Here, we show that mice born from γδ T cell-deficient (TCRδ-/-) dams display an increase in first-breath-induced inflammation, with a pulmonary milieu selectively enriched in type 2 cytokines and type 2-polarized immune cells, when compared with the progeny of γδ T cell-sufficient dams. Upon helminth infection, mice born from TCRδ-/- dams sustain an increased type 2 inflammatory response. This is independent of the genotype of the pups. Instead, the offspring of TCRδ-/- dams harbors a distinct intestinal microbiota, acquired during birth and fostering, and decreased levels of intestinal short-chain fatty acids (SCFAs), such as pentanoate and hexanoate. Importantly, exogenous SCFA supplementation inhibits type 2 innate lymphoid cell function and suppresses first-breath- and infection-induced inflammation. Taken together, our findings unravel a maternal γδ T cell-microbiota-SCFA axis regulating neonatal lung immunity.
Asunto(s)
Microbioma Gastrointestinal , Inmunidad Innata , Animales , Ratones , Linfocitos , Inflamación , Pulmón , Ratones Endogámicos C57BLRESUMEN
Innate lymphoid cells (ILCs) are capable of rapid response to a wide variety of immune challenges, including various respiratory pathogens. Despite this, their role in the immune response against the lethal intracellular bacterium Francisella tularensis is not yet known. In this study, we demonstrate that infection of the airways with F. tularensis results in a significant reduction in lung type 2 ILCs (ILC2s) in mice. Conversely, the expansion of ILC2s via treatment with the cytokine IL-33, or by adoptive transfer of ILC2s, resulted in significantly enhanced bacterial burdens in the lung, liver, and spleen, suggesting that ILC2s may favor severe infection. Indeed, specific reduction of ILC2s in a transgenic mouse model results in a reduction in lung bacterial burden. Using an in vitro culture system, we show that IFN-γ from the live vaccine strain-infected lung reduces ILC2 numbers, suggesting that this cytokine in the lung environment is mechanistically important in reducing ILC2 numbers during infection. Finally, we show Ab-mediated blockade of IL-5, of which ILC2s are a major innate source, reduces bacterial burden postinfection, suggesting that IL-5 production by ILC2s may play a role in limiting protective immunity. Thus, overall, we highlight a negative role for ILC2s in the control of infection with F. tularensis. Our work therefore highlights the role of ILC2s in determining the severity of potentially fatal airway infections and raises the possibility of interventions targeting innate immunity during infection with F. tularensis to benefit the host.
Asunto(s)
Francisella tularensis , Animales , Ratones , Inmunidad Innata , Linfocitos , Interleucina-5 , CitocinasRESUMEN
Group 2 innate lymphoid cells (ILC2) are functionally poised, tissue-resident lymphocytes that respond rapidly to damage and infection at mucosal barrier sites. ILC2 reside within complex microenvironments where they are subject to cues from both the diet and invading pathogens-including helminths. Emerging evidence suggests ILC2 are acutely sensitive not only to canonical activating signals but also perturbations in nutrient availability. In the context of helminth infection, we identify amino acid availability as a nutritional cue in regulating ILC2 responses. ILC2 are found to be uniquely preprimed to import amino acids via the large neutral amino acid transporters Slc7a5 and Slc7a8. Cell-intrinsic deletion of these transporters individually impaired ILC2 expansion, while concurrent loss of both transporters markedly impaired the proliferative and cytokine-producing capacity of ILC2. Mechanistically, amino acid uptake determined the magnitude of ILC2 responses in part via tuning of mTOR. These findings implicate essential amino acids as a metabolic requisite for optimal ILC2 responses within mucosal barrier tissues.
Asunto(s)
Inmunidad Innata , Linfocitos , Linfocitos/metabolismo , Aminoácidos/metabolismo , Citocinas/metabolismo , Membrana Mucosa/metabolismoRESUMEN
The gut microbiota is important for host health and immune system function. Moreover autoimmune diseases, such as rheumatoid arthritis, are associated with significant gut microbiota dysbiosis, although the causes and consequences of this are not fully understood. It has become clear that the composition and metabolic outputs of the microbiome exhibit robust 24 h oscillations, a result of daily variation in timing of food intake as well as rhythmic circadian clock function in the gut. Here, we report that experimental inflammatory arthritis leads to a re-organization of circadian rhythmicity in both the gut and associated microbiome. Mice with collagen induced arthritis exhibited extensive changes in rhythmic gene expression in the colon, and reduced barrier integrity. Re-modeling of the host gut circadian transcriptome was accompanied by significant alteration of the microbiota, including widespread loss of rhythmicity in symbiont species of Lactobacillus, and alteration in circulating microbial derived factors, such as tryptophan metabolites, which are associated with maintenance of barrier function and immune cell populations within the gut. These findings highlight that altered circadian rhythmicity during inflammatory disease contributes to dysregulation of gut integrity and microbiome function.
Asunto(s)
Artritis Experimental , Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Disbiosis/etiología , Artritis Experimental/complicaciones , ColágenoRESUMEN
Interactions between the mammalian host and commensal microbiota are enforced through a range of immune responses that confer metabolic benefits and promote tissue health and homeostasis. Immunoglobulin A (IgA) responses directly determine the composition of commensal species that colonize the intestinal tract but require substantial metabolic resources to fuel antibody production by tissue-resident plasma cells. Here, we demonstrate that IgA responses are subject to diurnal regulation over the course of a circadian day. Specifically, the magnitude of IgA secretion, as well as the transcriptome of intestinal IgA+ plasma cells, was found to exhibit rhythmicity. Oscillatory IgA responses were found to be entrained by time of feeding and were also found to be in part coordinated by the plasma cell-intrinsic circadian clock via deletion of the master clock gene Arntl. Moreover, reciprocal interactions between the host and microbiota dictated oscillatory dynamics among the commensal microbial community and its associated transcriptional and metabolic activity in an IgA-dependent manner. Together, our findings suggest that circadian networks comprising intestinal IgA, diet, and the microbiota converge to align circadian biology in the intestinal tract and to ensure host-microbial mutualism.
Asunto(s)
Microbiota , Simbiosis , Animales , Inmunoglobulina A Secretora , Intestinos , Mamíferos , PeriodicidadRESUMEN
Tissue-resident innate lymphoid cells (ILCs) regulate tissue homeostasis, protect against pathogens at mucosal surfaces, and are key players at the interface of innate and adaptive immunity. How ILCs adapt their phenotype and function to environmental cues within tissues remains to be fully understood. Here, we show that Mycobacterium tuberculosis (Mtb) infection alters the phenotype and function of lung IL-18Rα+ ILC toward a protective interferon-γ-producing ILC1-like population. This differentiation is controlled by type 1 cytokines and is associated with a glycolytic program. Moreover, a BCG-driven type I milieu enhances the early generation of ILC1-like cells during secondary challenge with Mtb. Collectively, our data reveal how tissue-resident ILCs adapt to type 1 inflammation toward a pathogen-tailored immune response.
Asunto(s)
Inmunidad Innata , Tuberculosis , Citocinas , Humanos , Inflamación , LinfocitosRESUMEN
A new study published in this issue by Nixon et al. demonstrates a cytotoxic transcriptional program, characterized by granzyme C expression, that distinguishes group 1 innate lymphoid cells from classical natural killer cells across multiple tissues in mice.
Asunto(s)
Inmunidad Innata , Células Asesinas Naturales , Animales , RatonesRESUMEN
Improving the efficacy of immune checkpoint therapies will require a better understanding of how immune cells are recruited and sustained in tumors. Here, we used the photoconversion of the tumor immune cell compartment to identify newly entering lymphocytes, determine how they change over time, and investigate their egress from the tumor. Combining single-cell transcriptomics and flow cytometry, we found that while a diverse mix of CD8 T cell subsets enter the tumor, all CD8 T cells retained within this environment for more than 72 h developed an exhausted phenotype, revealing the rapid establishment of this program. Rather than forming tumor-resident populations, non-effector subsets, which express TCF-1 and include memory and stem-like cells, were continuously recruited into the tumor, but this recruitment was balanced by concurrent egress to the tumor-draining lymph node. Thus, the TCF-1+ CD8 T cell niche in tumors is highly dynamic, with the circulation of cells between the tumor and peripheral lymphoid tissue to bridge systemic and intratumoral responses.