Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(10)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530355

RESUMEN

The mammalian SUMO-targeted E3 ubiquitin ligase Rnf4 has been reported to act as a regulator of DNA repair, but the importance of RNF4 as a tumor suppressor has not been tested. Using a conditional-knockout mouse model, we deleted Rnf4 in the B cell lineage to test the importance of RNF4 for growth of somatic cells. Although Rnf4-conditional-knockout B cells exhibited substantial genomic instability, Rnf4 deletion caused no increase in tumor susceptibility. In contrast, Rnf4 deletion extended the healthy lifespan of mice expressing an oncogenic c-myc transgene. Rnf4 activity is essential for normal DNA replication, and in its absence, there was a failure in ATR-CHK1 signaling of replication stress. Factors that normally mediate replication fork stability, including members of the Fanconi anemia gene family and the helicases PIF1 and RECQL5, showed reduced accumulation at replication forks in the absence of RNF4. RNF4 deficiency also resulted in an accumulation of hyper-SUMOylated proteins in chromatin, including members of the SMC5/6 complex, which contributes to replication failure by a mechanism dependent on RAD51. These findings indicate that RNF4, which shows increased expression in multiple human tumor types, is a potential target for anticancer therapy, especially in tumors expressing c-myc.


Asunto(s)
Replicación del ADN , Proteínas Proto-Oncogénicas c-myc , Animales , Humanos , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos B/metabolismo , Linfocitos B/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Inestabilidad Genómica , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cancer Res ; 81(18): 4676-4684, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34301763

RESUMEN

BRCA1 maintains genome integrity and suppresses tumorigenesis by promoting homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSB) and DNA damage-induced cell-cycle checkpoints. Phosphorylation of BRCA1 by ATM, ATR, CHK2, CDK, and PLK1 kinases has been reported to regulate its functions. Here we show that ATR and ATM-mediated phosphorylation of BRCA1 on T1394, a highly conserved but functionally uncharacterized site, is a key modification for its function in the DNA damage response (DDR). Following DNA damage, T1394 phosphorylation ensured faithful repair of DSBs by promoting HR and preventing single-strand annealing, a deletion-generating repair process. BRCA1 T1394 phosphorylation further safeguarded chromosomal integrity by maintaining the G2-M checkpoint. Moreover, multiple patient-derived BRCA1 variants of unknown significance were shown to affect T1394 phosphorylation. These results establish an important regulatory mechanism of BRCA1 function in the DDR and may have implications in the development or prognosis of BRCA1-associated cancers. SIGNIFICANCE: This study identifies a BRCA1 phosphorylation event critical for its DNA repair function and reveals the functional defects of several BRCA1 variants of unknown significance.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Reparación del ADN por Recombinación , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Proteína BRCA1/química , Proteína BRCA1/genética , Línea Celular Tumoral , Daño del ADN , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Humanos , Ratones , Ratones Transgénicos , Modelos Biológicos , Fosforilación
3.
Cancer Res ; 80(19): 4044-4045, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008804

RESUMEN

Mutations in the BRCA1 gene cause an extremely high lifetime risk of breast and ovarian cancer, but the exact mechanism by which the BRCA1 protein acts to prevent cancer onset remains unclear. In this edition of Cancer Research, Park and colleagues describe a new mouse model featuring a single amino acid substitution in the coiled-coil motif of BRCA1. This change prevents BRCA1 from interacting with PALB2 (partner and localizer of BRCA2), causing rapid cancer onset and a loss of blood cells similar to Fanconi anemia.See related article by Park et al., p. 4172.


Asunto(s)
Proteína BRCA1 , Anemia de Fanconi , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Anemia de Fanconi/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Humanos , Ratones , Proteínas Supresoras de Tumor/genética
4.
Cell Cycle ; 17(7): 881-891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29620483

RESUMEN

'BRCAness' is a term used to describe cancer cells that behave similarly to tumors with BRCA1 or BRCA2 mutations. The BRCAness phenotype is associated with hypersensitivity to chemotherapy agents including PARP inhibitors, which are a promising class of recently-licensed anti-cancer treatments. This hypersensitivity arises because of a deficiency in the homologous recombination (HR) pathway for DNA double-strand break repair. To gain further insight into how genetic modifiers of HR contribute to the BRCAness phenotype, we created a new mouse model of BRCAness by generating mice that are deficient in BLM helicase and the Exo1 exonuclease, which are involved in the early stages of HR. We find that cells lacking BLM and Exo1 exhibit a BRCAness phenotype, with diminished HR, and hypersensitivity to PARP inhibitors. We further tested how 53BP1, an important regulator of HR, affects repair efficiency in our BRCAness model. We find that deletion of 53BP1 can relieve several of the repair deficiencies observed in cells lacking BLM and Exo1, just as it does in cells lacking BRCA1. These results substantiate the importance of BRCAness as a concept for classification of cancer cases, and further clarify the role of 53BP1 in regulation of DNA repair pathway choice in mammalian cells.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN/efectos de los fármacos , Exodesoxirribonucleasas/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , RecQ Helicasas/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/efectos de la radiación , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Enzimas Reparadoras del ADN/deficiencia , Exodesoxirribonucleasas/deficiencia , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Rayos gamma , Eliminación de Gen , Expresión Génica , Inestabilidad Genómica , Humanos , Ratones , Ratones Noqueados , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Cultivo Primario de Células , RecQ Helicasas/deficiencia , Intercambio de Cromátides Hermanas , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia
5.
J Biol Chem ; 293(27): 10502-10511, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414795

RESUMEN

DNA double-strand breaks (DSBs) arise regularly in cells and when left unrepaired cause senescence or cell death. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two major DNA-repair pathways. Whereas HR allows faithful DSB repair and healthy cell growth, NHEJ has higher potential to contribute to mutations and malignancy. Many regulatory mechanisms influence which of these two pathways is used in DSB repair. These mechanisms depend on the cell cycle, post-translational modifications, and chromatin effects. Here, we summarize current research into these mechanisms, with a focus on mammalian cells, and also discuss repair by "alternative end-joining" and single-strand annealing.


Asunto(s)
Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Transducción de Señal , Animales , Humanos
6.
Mol Cell Biol ; 38(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378830

RESUMEN

Complete replication of the genome is an essential prerequisite for normal cell division, but a variety of factors can block the replisome, triggering replication stress and potentially causing mutation or cell death. The cellular response to replication stress involves recruitment of proteins to stabilize the replication fork and transmit a stress signal to pause the cell cycle and allow fork restart. We find that the ubiquitously expressed DNA damage response factor 53BP1 is required for the normal response to replication stress. Using primary, ex vivo B cells, we showed that a population of 53BP1-/- cells in early S phase is hypersensitive to short-term exposure to three different agents that induce replication stress. 53BP1 localizes to a subset of replication forks following induced replication stress, and an absence of 53BP1 leads to defective ATR-Chk1-p53 signaling and caspase 3-mediated cell death. Nascent replicated DNA additionally undergoes degradation in 53BP1-/- cells. These results show that 53BP1 plays an important role in protecting replication forks during the cellular response to replication stress, in addition to the previously characterized role of 53BP1 in DNA double-strand break repair.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Replicación del ADN/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos B/fisiología , Caspasa 3/genética , Proteínas de Ciclo Celular/genética , Muerte Celular/genética , División Celular/genética , Células Cultivadas , ADN/genética , Daño del ADN/genética , Reparación del ADN/genética , Células HEK293 , Humanos , Ratones , Fase S/genética , Transducción de Señal/genética
8.
J Cell Biol ; 216(11): 3521-3534, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28912125

RESUMEN

The BLM gene product, BLM, is a RECQ helicase that is involved in DNA replication and repair of DNA double-strand breaks by the homologous recombination (HR) pathway. During HR, BLM has both pro- and anti-recombinogenic activities, either of which may contribute to maintenance of genomic integrity. We find that in cells expressing a mutant version of BRCA1, an essential HR factor, ablation of BLM rescues genomic integrity and cell survival in the presence of DNA double-strand breaks. Improved genomic integrity in these cells is linked to a substantial increase in the stability of RAD51 at DNA double-strand break sites and in the overall efficiency of HR. Ablation of BLM also rescues RAD51 foci and HR in cells lacking BRCA2 or XRCC2. These results indicate that the anti-recombinase activity of BLM is of general importance for normal retention of RAD51 at DNA break sites and regulation of HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Linfocitos/enzimología , Neoplasias/enzimología , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Reparación del ADN por Recombinación , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/genética , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Genotipo , Humanos , Linfocitos/patología , Ratones Noqueados , Mutación , Neoplasias/genética , Neoplasias/patología , Fenotipo , Estabilidad Proteica , Interferencia de ARN , Recombinasa Rad51/genética , RecQ Helicasas/deficiencia , RecQ Helicasas/genética , Transfección , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Proteína 1 de Unión al Supresor Tumoral P53/genética
9.
EMBO Rep ; 17(11): 1532-1541, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27670884

RESUMEN

BRCA1 mutations strongly predispose affected individuals to breast and ovarian cancer, but the mechanism by which BRCA1 acts as a tumor suppressor is not fully understood. Homozygous deletion of exon 2 of the mouse Brca1 gene normally causes embryonic lethality, but we show that exon 2-deleted alleles of Brca1 are expressed as a mutant isoform that lacks the N-terminal RING domain. This "RING-less" BRCA1 protein is stable and efficiently recruited to the sites of DNA damage. Surprisingly, robust RAD51 foci form in cells expressing RING-less BRCA1 in response to DNA damage, but the cells nonetheless display the substantial genomic instability. Genomic instability can be rescued by the deletion of Trp53bp1, which encodes the DNA damage response factor 53BP1, and mice expressing RING-less BRCA1 do not show an increased susceptibility to tumors in the absence of 53BP1. Genomic instability in cells expressing RING-less BRCA1 correlates with the loss of BARD1 and a defect in restart of replication forks after hydroxyurea treatment, suggesting a role of BRCA1-BARD1 in genomic integrity that is independent of RAD51 loading.


Asunto(s)
Inestabilidad Genómica , Proteínas Supresoras de Tumor/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Proteína BRCA1 , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Exones/genética , Femenino , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN , Eliminación de Secuencia , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
10.
Biochem J ; 473(20): 3517-3532, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27503910

RESUMEN

Telomerase is a unique ribonucleoprotein enzyme that is required for continued cell proliferation. To generate catalytically active telomerase, human telomerase reverse transcriptase (hTERT) must translocate to the nucleus and assemble with the RNA component of telomerase. The molecular chaperones heat shock protein 90 (Hsp90) and p23 maintain hTERT in a conformation that enables nuclear translocation. However, the regulatory role of chaperones in nuclear transport of hTERT remains unclear. In this work, we demonstrate that immunophilin FK506-binding protein (FKBP)52 linked the hTERT-Hsp90 complex to the dynein-dynactin motor, thereby promoting the transport of hTERT to the nucleus along microtubules. FKBP52 interacted with the hTERT-Hsp90 complex through binding of the tetratricopeptide repeat domain to Hsp90 and binding of the dynamitin (Dyt) component of the dynein-associated dynactin complex to the peptidyl prolyl isomerase domain. The depletion of FKBP52 inhibited nuclear transport of hTERT, resulting in cytoplasmic accumulation. Cytoplasmic hTERT was rapidly degraded through ubiquitin (Ub)-dependent proteolysis, thereby abrogating telomerase activity. In addition, overexpression of dynamitin, which is known to dissociate the dynein-dynactin motor from its cargoes, reduced telomerase activity. Collectively, these results provide a molecular mechanism by which FKBP52 modulates telomerase activity by promoting dynein-dynactin-dependent nuclear import of hTERT.


Asunto(s)
Citoplasma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Telomerasa/metabolismo , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Humanos , Immunoblotting , Inmunoprecipitación , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Interferencia de ARN , Proteínas de Unión a Tacrolimus/genética , Telomerasa/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitinación/genética , Ubiquitinación/fisiología
11.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 658-64, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27325824

RESUMEN

Sustaining genomic integrity is essential for preventing onset of cancers. Therefore, human cells evolve to have refined biological pathways to defend genetic materials from various genomic insults. DNA damage response and DNA repair pathways essential for genome maintenance are accomplished by cooperative executions of multiple factors including breast cancer type 1 susceptibility protein (BRCA1). BRCA1 is initially identified as an altered gene in the hereditary breast cancer patients. Since then, tremendous efforts to understand the functions of BRAC1 reveal that BRCA1 is found in distinct complexes, including BRCA1-A, BRCA1-B, BRCA1-C, and the BRCA1/PALB2/BRCA2 complex, and plays diverse roles in a context-dependent manner. Among the complexes, BRCA1-A is critical for BRCA1 recruitment to the sites of DNA damage. Factors comprising the BRCA1-A include RAP80, CCDC98/Abraxas, BRCC36, BRCC45, BARD1, BRCA1, and MERIT40, a RAP80-associated factor. In this review, we summarize recent findings of the factors that form the BRCA1-A complex.


Asunto(s)
Proteína BRCA1/metabolismo , Daño del ADN , Proteína BRCA1/química , Proteína BRCA1/genética , Humanos
12.
FEBS Lett ; 590(12): 1776-90, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27214791

RESUMEN

The human telomeric protein TRF1 negatively regulates telomere length by inhibiting the access of telomerase to telomeres. Here, we describe a novel function of NEDD8 ultimate buster-1 (NUB1) for regulating the levels of TRF1 at telomeres. NUB1 is a NEDD8-interacting protein, which down-regulates the NEDD8 conjugation system. We showed that NUB1 physically interacts with TRF1 and promotes its degradation by the proteasome in the absence of NEDD8 conjugation. We also demonstrated that TRF1 is conjugated to NEDD8, and that neddylated TRF1 is targeted to the proteasome for degradation in a NUB1-dependent manner. These data suggest that NUB1 participates in telomere maintenance by regulating the levels of TRF1 at telomeres through both NEDD8-dependent and NEDD8-independent pathways.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Células HEK293 , Células HeLa , Humanos , Proteína NEDD8 , Complejo de la Endopetidasa Proteasomal/genética , Procesamiento Proteico-Postraduccional/fisiología , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
13.
FEBS Lett ; 589(21): 3277-86, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26450775

RESUMEN

The human telomeric protein TRF2 protects chromosome ends by facilitating their organization into the protective capping structure. Here we show that the stability of TRF2 is regulated via modification by the small ubiquitin-like modifiers (SUMO). TRF2 specifically interacts with and is sumoylated by PIAS1 in mammalian cells. The proteasome inhibitor stabilizes SUMO-conjugated TRF2 without affecting the level of unmodified TRF2, suggesting that SUMO conjugation is required for proteasomal degradation of TRF2. We also show that RNF4, a mammalian SUMO-targeted ubiquitin ligase, interacts with TRF2 in a SUMO-dependent manner and preferentially targets SUMO-conjugated TRF2 for ubiquitination. Collectively, our data demonstrate that the PIAS1-mediated sumoylation status of TRF2 serves as a molecular switch that controls the level of TRF2 at telomeres.


Asunto(s)
Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Células HEK293 , Humanos , Células MCF-7 , Inhibidores de Proteasoma/farmacología , Sumoilación , Telómero/metabolismo , Ubiquitinación
14.
Biochem Biophys Res Commun ; 417(3): 1086-92, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22226966

RESUMEN

Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Nucléolo Celular/enzimología , Holoenzimas/metabolismo , Telomerasa/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Células HEK293 , Células HeLa , Holoenzimas/química , Humanos , Telomerasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...