Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
IEEE Trans Vis Comput Graph ; 30(5): 2109-2118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38437112

RESUMEN

The sense of embodiment in virtual reality (VR) is commonly understood as the subjective experience that one's physical body is substituted by a virtual counterpart, and is typically achieved when the avatar's body, seen from a first-person view, moves like one's physical body. Embodiment can also be experienced in other circumstances (e.g., in third-person view) or with imprecise or distorted visuo-motor coupling. It was moreover observed, in various cases of small or progressive temporal and spatial manipulations of avatars' movements, that participants may spontaneously follow the movement shown by the avatar. The present work investigates whether, in some specific contexts, participants would follow what their avatar does even when large movement discrepancies occur, thereby extending the scope of understanding of the self-avatar follower effect beyond subtle changes of motion or speed manipulations. We conducted an experimental study in which we introduced uncertainty about which movement to perform at specific times and analyzed participants' movements and subjective feedback after their avatar showed them an incorrect movement. Results show that, when in doubt, participants were influenced by their avatar's movements, leading them to perform that particular error twice more often than normal. Importantly, results of the embodiment score indicate that participants experienced a dissociation with their avatar at those times. Overall, these observations not only demonstrate the possibility of provoking situations in which participants follow the guidance of their avatar for large motor distortions, despite their awareness about the avatar movement disruption and on the possible influence it had on their choice, and, importantly, exemplify how the cognitive mechanism of embodiment is deeply rooted in the necessity of having a body.


Asunto(s)
Avatar , Realidad Virtual , Humanos , Interfaz Usuario-Computador , Gráficos por Computador , Movimiento
2.
Nat Commun ; 15(1): 1905, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472203

RESUMEN

Hallucinations are frequent non-motor symptoms in Parkinson's disease (PD) associated with dementia and higher mortality. Despite their high clinical relevance, current assessments of hallucinations are based on verbal self-reports and interviews that are limited by important biases. Here, we used virtual reality (VR), robotics, and digital online technology to quantify presence hallucination (vivid sensations that another person is nearby when no one is actually present and can neither be seen nor heard) in laboratory and home-based settings. We establish that elevated numerosity estimation of virtual human agents in VR is a digital marker for experimentally induced presence hallucinations in healthy participants, as confirmed across several control conditions and analyses. We translated the digital marker (numerosity estimation) to an online procedure that 170 PD patients carried out remotely at their homes, revealing that PD patients with disease-related presence hallucinations (but not control PD patients) showed higher numerosity estimation. Numerosity estimation enables quantitative monitoring of hallucinations, is an easy-to-use unobtrusive online method, reaching people far away from medical centers, translating neuroscientific findings using robotics and VR, to patients' homes without specific equipment or trained staff.


Asunto(s)
Enfermedad de Parkinson , Humanos , Alucinaciones
3.
J Neural Eng ; 21(2)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386506

RESUMEN

Objective.A key challenge of virtual reality (VR) applications is to maintain a reliable human-avatar mapping. Users may lose the sense of controlling (sense of agency), owning (sense of body ownership), or being located (sense of self-location) inside the virtual body when they perceive erroneous interaction, i.e. a break-in-embodiment (BiE). However, the way to detect such an inadequate event is currently limited to questionnaires or spontaneous reports from users. The ability to implicitly detect BiE in real-time enables us to adjust human-avatar mapping without interruption.Approach.We propose and empirically demonstrate a novel brain computer interface (BCI) approach that monitors the occurrence of BiE based on the users' brain oscillatory activity in real-time to adjust the human-avatar mapping in VR. We collected EEG activity of 37 participants while they performed reaching movements with their avatar with different magnitude of distortion.Main results.Our BCI approach seamlessly predicts occurrence of BiE in varying magnitude of erroneous interaction. The mapping has been customized by BCI-reinforcement learning (RL) closed-loop system to prevent BiE from occurring. Furthermore, a non-personalized BCI decoder generalizes to new users, enabling 'Plug-and-Play' ErrP-based non-invasive BCI. The proposed VR system allows customization of human-avatar mapping without personalized BCI decoders or spontaneous reports.Significance.We anticipate that our newly developed VR-BCI can be useful to maintain an engaging avatar-based interaction and a compelling immersive experience while detecting when users notice a problem and seamlessly correcting it.


Asunto(s)
Avatar , Realidad Virtual , Humanos , Interfaz Usuario-Computador , Movimiento , Electroencefalografía
4.
iScience ; 27(1): 108547, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38161418

RESUMEN

Out-of-body experiences (OBEs) are characterized by the subjective feeling of being located outside one's physical body and perceiving one's own body from an elevated perspective looking downwards. OBEs have been correlated with abnormal integration of bodily signals, including visual and vestibular information. In two studies, we used mixed reality combined with a motion platform to manipulate visual and vestibular integration in healthy participants. Behavioral data and questionnaires show that congruent visual-vestibular stimulation in a self-centered reference frame induced an OBE-like illusion characterized by elevated self-location and feelings of disembodiment and lightness. The OBE-like illusion was also modulated by individuals' visual field dependency assessed by the Rod and Frame Test. These results show that the manipulation of visual-vestibular stimulation in the present study induces various aspects of OBEs and further link OBE to congruency mechanisms between visual and vestibular gravitational and self-motion cues.

5.
ERJ Open Res ; 9(6)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020572

RESUMEN

Background: Immersive virtual reality (iVR)-based digital therapeutics are gaining clinical attention in the field of pain management. Based on known analogies between pain and dyspnoea, we investigated the effects of visual respiratory feedback on persistent dyspnoea in patients recovering from coronavirus disease 2019 (COVID-19) pneumonia. Methods: We performed a controlled, randomised, single-blind, crossover proof-of-concept study (feasibility and initial clinical efficacy) to evaluate an iVR-based intervention to alleviate dyspnoea in patients recovering from COVID-19 pneumonia. Included patients reported persistent dyspnoea (≥5 on a 10-point scale) and preserved cognitive function (Montreal Cognitive Assessment score >24). Assignment was random and concealed. Patients received synchronous (intervention) or asynchronous (control) feedback of their breathing, embodied via a gender-matched virtual body. The virtual body flashed in a waxing and waning visual effect that could be synchronous or asynchronous to the patient's respiratory movements. Outcomes were assessed using questionnaires and breathing recordings. Results: Study enrolment was open between November 2020 and April 2021. 26 patients were enrolled (27% women; median age 55 years, interquartile range (IQR) 18 years). Data were available for 24 of 26 patients. The median rating on a 7-point Likert scale of breathing comfort improved from 1 (IQR 2) at baseline to 2 (IQR 1) for synchronous feedback, but remained unchanged at 1 (IQR 1.5) for asynchronous feedback (p<0.05 between iVR conditions). Moreover, 91.2% of all patients were satisfied with the intervention (p<0.0001) and 66.7% perceived it as beneficial for their breathing (p<0.05). Conclusion: Our iVR-based digital therapy presents a feasible and safe respiratory rehabilitation tool that improves breathing comfort in patients recovering from COVID-19 infection presenting with persistent dyspnoea. Future research should investigate the intervention's generalisability to persistent dyspnoea with other aetiologies and its potential for preventing chronification.

6.
Sci Rep ; 13(1): 10569, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386091

RESUMEN

Knowing where objects are relative to us implies knowing where we are relative to the external world. Here, we investigated whether space perception can be influenced by an experimentally induced change in perceived self-location. To dissociate real and apparent body positions, we used the full-body illusion. In this illusion, participants see a distant avatar being stroked in virtual reality while their own physical back is simultaneously stroked. After experiencing the discrepancy between the seen and the felt location of the stroking, participants report a forward drift in self-location toward the avatar. We wondered whether this illusion-induced forward drift in self-location would affect where we perceive objects in depth. We applied a psychometric measurement in which participants compared the position of a probe against a reference sphere in a two-alternative forced choice task. We found a significant improvement in task performance for the right visual field, indicated by lower just-noticeable differences, i.e., participants were better at judging the differences of the two spheres in depth. Our results suggest that the full-body illusion is able to facilitate depth perception at least unilaterally, implying that depth perception is influenced by perceived self-location.


Asunto(s)
Ilusiones , Accidente Cerebrovascular , Humanos , Umbral Diferencial , Emociones , Examen Físico , Percepción de Profundidad
7.
PLoS One ; 18(5): e0282967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167243

RESUMEN

The brain mechanism of embodiment in a virtual body has grown a scientific interest recently, with a particular focus on providing optimal virtual reality (VR) experiences. Disruptions from an embodied state to a less- or non-embodied state, denominated Breaks in Embodiment (BiE), are however rarely studied despite their importance for designing interactions in VR. Here we use electroencephalography (EEG) to monitor the brain's reaction to a BiE, and investigate how this reaction depends on previous embodiment conditions. The experimental protocol consisted of two sequential steps; an induction step where participants were either embodied or non-embodied in an avatar, and a monitoring step where, in some cases, participants saw the avatar's hand move while their hand remained still. Our results show the occurrence of error-related potentials linked to observation of the BiE event in the monitoring step. Importantly, this EEG signature shows amplified potentials following the non-embodied condition, which is indicative of an accumulation of errors across steps. These results provide neurophysiological indications on how progressive disruptions impact the expectation of embodiment for a virtual body.


Asunto(s)
Electroencefalografía , Realidad Virtual , Humanos , Encéfalo , Mano , Cabeza
8.
PLoS One ; 18(1): e0266212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662690

RESUMEN

In immersive Virtual Reality (VR), users can experience the subjective feeling of embodiment for the avatar representing them in a virtual world. This is known to be strongly supported by a high Sense of Agency (SoA) for the movements of the avatar that follows the user. In general, users do not self-attribute actions of their avatar that are different from the one they actually performed. The situation is less clear when actions of the avatar satisfies the intention of the user despite distortions and noticeable differences between user and avatar movements. Here, a within-subject experiment was condutected to determine wether a finger swap helping users to achieve a task would be more tolerated than one penalizing them. In particular, in a context of fast-paced finger movements and with clear correct or incorrect responses, we swapped the finger animation of the avatar (e.g. user moves the index finger, the avatar moves the middle one) to either automatically correct for spontaneous mistakes or to introduce incorrect responses. Subjects playing a VR game were asked to report when they noticed the introduction of a finger swap. Results based on 3256 trials (∼24% of swaps noticed) show that swaps helping users have significantly fewer odds of being noticed (and with higher confidence) than the ones penalizing users. This demonstrates how the context and the intention for motor action are important factors for the SoA and for embodiment, opening new perspectives on how to design and study interactions in immersive VR.


Asunto(s)
Emociones , Realidad Virtual , Humanos , Masculino , Animales , Movimiento/fisiología , Interfaz Usuario-Computador
9.
PLoS One ; 17(3): e0255554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35235574

RESUMEN

Providing Virtual Reality(VR) users with a 3D representation of their body complements the experience of immersion and presence in the virtual world with the experience of being physically located and more personally involved. A full-body avatar representation is known to induce a Sense of Embodiment (SoE) for this virtual body, which is associated with improvements in task performance, motivation and motor learning. Recent experimental research on embodiment provides useful guidelines, indicating the extent of discrepancy tolerated by users and, conversely, the limits and disruptive events that lead to a break in embodiment (BiE). Based on previous works on the limit of agency under movement distortion, this paper describes, studies and analyses the impact of a very common yet overlooked embodiment limitation linked to articular limits when performing a reaching movement. We demonstrate that perceiving the articular limit when fully extending the arm provides users with an additional internal proprioceptive feedback which, if not matched in the avatar's movement, leads to the disruptive realization of an incorrect posture mapping. This study complements previous works on self-contact and visuo-haptic conflicts and emphasizes the risk of disrupting the SoE when distorting users' movements or using a poorly-calibrated avatar.


Asunto(s)
Realidad Virtual
10.
J Clin Neurosci ; 95: 55-62, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34929652

RESUMEN

Virtual reality (VR) technology had its earliest developments in the 1970s in the U.S. Air Force and has since evolved into a budding area of scientific research with many practical medical purposes. VR shows a high potential to benefit to learners and trainees and improve surgery through enhanced preoperative planning and efficiency in the operating room. Neurosurgery is a field of medicine in which VR has been accepted early on as a useful and promising tool for neuro-navigation planning. Through recent technological developments, VR further increased its level of immersion, accessibility and intuitive use for surgeons and students and now reveals a therapeutic potential for patients. In this paper, we systematically reviewed the neurosurgery literature regarding the use of VR as an assistance for surgery or a tool centered on patients' care. A literature search conducted according to PRISMA guidelines resulted in the screening of 125 abstracts and final inclusion of 100 original publications reviewed. The review shows that neurosurgeons are now relatively familiar with VR technologies (N = 95 articles) for their training and practice. VR technologies are useful for education, pain management and rehabilitation in neurosurgical patients. Nevertheless, the current patient-oriented use of VR remains limited (N = 5 articles). Successful surgery does not only depend on the surgeon's skills and preparation, but also on patients' education, comfort, empowerment and care. Therefore further clinical research is needed to promote the direct use of VR technologies by patients in neurosurgery.


Asunto(s)
Neurocirugia , Realidad Virtual , Humanos , Neurocirujanos , Procedimientos Neuroquirúrgicos
11.
IEEE Trans Vis Comput Graph ; 28(9): 3193-3205, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33556011

RESUMEN

In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant's avatar can appear to be quite different from oneself for the sake of the targeted application (e.g., for perspective-taking). In addition, the system can partially manipulate the displayed avatar movement through some distortion to make the overall experience more enjoyable and effective (e.g., training, exercising, rehabilitation). Despite its potential, an excessive distortion may become noticeable and break the feeling of being embodied into the avatar. Past researches have shown that individuals have a relatively high tolerance to movement distortions and a great variability of individual sensitivities to distortions. In this article, we propose a method taking advantage of Reinforcement Learning (RL) to efficiently identify the magnitude of the maximum distortion that does not get noticed by an individual (further noted the detection threshold). We show through a controlled experiment with subjects that the RL method finds a more robust detection threshold compared to the adaptive staircase method, i.e., it is more able to prevent subjects from detecting the distortion when its amplitude is equal or below the threshold. Finally, the associated majority voting system makes the RL method able to handle more noise within the forced choices input than adaptive staircase. This last feature is essential for future use with physiological signals as these latter are even more susceptible to noise. It would then allow to calibrate embodiment individually to increase the effectiveness of the proposed interactions.


Asunto(s)
Interfaz Usuario-Computador , Realidad Virtual , Gráficos por Computador , Humanos , Movimiento/fisiología
12.
Acta Neurochir (Wien) ; 163(5): 1213-1226, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33686522

RESUMEN

Surgical treatment of tumors, epileptic foci or of vascular origin, requires a detailed individual pre-surgical workup and intra-operative surveillance of brain functions to minimize the risk of post-surgical neurological deficits and decline of quality of life. Most attention is attributed to language, motor functions, and perception. However, higher cognitive functions such as social cognition, personality, and the sense of self may be affected by brain surgery. To date, the precise localization and the network patterns of brain regions involved in such functions are not yet fully understood, making the assessment of risks of related post-surgical deficits difficult. It is in the interest of neurosurgeons to understand with which neural systems related to selfhood and personality they are interfering during surgery. Recent neuroscience research using virtual reality and clinical observations suggest that the insular cortex, medial prefrontal cortex, and temporo-parietal junction are important components of a neural system dedicated to self-consciousness based on multisensory bodily processing, including exteroceptive and interoceptive cues (bodily self-consciousness (BSC)). Here, we argue that combined extra- and intra-operative approaches using targeted cognitive testing, functional imaging and EEG, virtual reality, combined with multisensory stimulations, may contribute to the assessment of the BSC and related cognitive aspects. Although the usefulness of particular biomarkers, such as cardiac and respiratory signals linked to virtual reality, and of heartbeat evoked potentials as a surrogate marker for intactness of multisensory integration for intra-operative monitoring has to be proved, systemic and automatized testing of BSC in neurosurgical patients will improve future surgical outcome.


Asunto(s)
Mapeo Encefálico , Procedimientos Neuroquirúrgicos , Autoimagen , Imagen Corporal , Cognición , Potenciales Evocados/fisiología , Frecuencia Cardíaca/fisiología , Humanos
13.
Pain ; 162(6): 1641-1649, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33259460

RESUMEN

ABSTRACT: Spinal cord stimulation (SCS) is an approved treatment for truncal and limb neuropathic pain. However, pain relief is often suboptimal and SCS efficacy may reduce over time, requiring sometimes the addition of other pain therapies, stimulator revision, or even explantation. We designed and tested a new procedure by combining SCS with immersive virtual reality (VR) to enable analgesia in patients with chronic leg pain. We coupled SCS and VR by linking SCS-induced paresthesia with personalized visual bodily feedback that was provided by VR and matched to the spatiotemporal patterns of SCS-induced paresthesia. In this cross-sectional prospective interventional study, 15 patients with severe chronic pain and an SCS implant underwent congruent SCS-VR (personalized visual feedback of the perceived SCS-induced paresthesia displayed on the patient's virtual body) and 2 control conditions (incongruent SCS-VR and VR alone). We demonstrate the efficacy of neuromodulation-enhanced VR for the treatment of chronic pain by showing that congruent SCS-VR reduced pain ratings on average by 44%. Spinal cord stimulation-VR analgesia was stronger than that in both control conditions (enabling stronger analgesic effects than incongruent SCS-VR analgesia or VR alone) and kept increasing over successive stimulations, revealing the selectivity and consistency of the observed effects. We also show that analgesia persists after congruent SCS-VR had stopped, indicating carry over effects and underlining its therapeutic potential. Linking latest VR technology with recent insights from the neuroscience of body perception and SCS neuromodulation, our personalized new SCS-VR platform highlights the impact of immersive digiceutical therapies for chronic pain.Registration: clinicaltrials.gov, Identifier: NCT02970006.


Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Realidad Virtual , Analgésicos , Dolor Crónico/terapia , Estudios Transversales , Humanos , Estudios Prospectivos
14.
Neuroimage ; 223: 117370, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32931940

RESUMEN

Episodic memory (EM) is classically conceived as a memory for events, localized in space and time, and characterized by autonoetic consciousness (ANC) allowing to mentally travel back in time and subjectively relive an event. Building on recent evidence that the first-person visual co-perception of one's own body during encoding impacts EM, we used a scene recognition task in immersive virtual reality (VR) and measured how first-person body view would modulate peri-encoding resting-state fMRI, EM performance, and ANC. Specifically, we investigated the impact of body view on post-encoding functional connectivity in an a priori network of regions related either to EM or multisensory bodily processing and used these regions in a seed-to-whole brain analysis. Post-encoding connectivity between right hippocampus (rHC) and right parahippocampus (rPHC) was enhanced when participants encoded scenes while seeing their body. Moreover, the strength of connectivity between the rHC, rPHC and the neocortex displayed two main patterns with respect to body view. The connectivity with a sensorimotor fronto-parietal network, comprising primary somatosensory and primary motor cortices, correlated with ANC after - but not before - encoding, depending on body view. The opposite change of connectivity was found between rHC, rPHC and the medial parietal cortex (from being correlated with ANC before encoding to an absence of correlation after encoding), but irrespective of body view. Linking immersive VR and fMRI for the study of EM and ANC, these findings suggest that seeing one's own body during encoding impacts the brain activity related to EM formation by modulating the connectivity between the right hippocampal formation and the neocortical regions involved in the processing of multisensory bodily signals and self-consciousness.


Asunto(s)
Imagen Corporal , Encéfalo/fisiología , Memoria Episódica , Adulto , Mapeo Encefálico , Femenino , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Realidad Virtual , Adulto Joven
15.
Cereb Cortex ; 30(9): 5088-5106, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32377673

RESUMEN

Interactions between individuals and the environment occur within the peri-personal space (PPS). The encoding of this space plastically adapts to bodily constraints and stimuli features. However, these remapping effects have not been demonstrated on an adaptive time-scale, trial-to-trial. Here, we test this idea first via a visuo-tactile reaction time (RT) paradigm in augmented reality where participants are asked to respond as fast as possible to touch, as visual objects approach them. Results demonstrate that RTs to touch are facilitated as a function of visual proximity, and the sigmoidal function describing this facilitation shifts closer to the body if the immediately precedent trial had indexed a smaller visuo-tactile disparity. Next, we derive the electroencephalographic correlates of PPS and demonstrate that this multisensory measure is equally shaped by recent sensory history. Finally, we demonstrate that a validated neural network model of PPS is able to account for the present results via a simple Hebbian plasticity rule. The present findings suggest that PPS encoding remaps on a very rapid time-scale and, more generally, that it is sensitive to sensory history, a key feature for any process contextualizing subsequent incoming sensory information (e.g., a Bayesian prior).


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Redes Neurales de la Computación , Espacio Personal , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Tiempo de Reacción , Percepción del Tacto/fisiología , Percepción Visual/fisiología , Adulto Joven
16.
Brain Behav ; 10(6): e01571, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342631

RESUMEN

INTRODUCTION: Personally meaningful past episodes, defined as episodic memories (EM), are subjectively re-experienced from the natural perspective and location of one's own body, as described by bodily self-consciousness (BSC). Neurobiological mechanisms of memory consolidation suggest how initially irrelevant episodes may be remembered, if related information makes them gain importance later in time, leading for instance, to a retroactive memory strengthening in humans. METHODS: Using an immersive virtual reality system, we were able to directly manipulate the presence or absence of one's body, which seems to prevent a loss of initially irrelevant, self-unrelated past events. RESULTS AND CONCLUSION: Our findings provide an evidence that personally meaningful memories of our past are not fixed, but may be strengthened by later events, and that body-related integration is important for the successful recall of episodic memories.


Asunto(s)
Memoria Episódica , Realidad Virtual , Emociones , Humanos , Recuerdo Mental , Interfaz Usuario-Computador
17.
Psychophysiology ; 57(8): e13564, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32162704

RESUMEN

Previous studies investigated bodily self-consciousness (BSC) by experimentally exposing subjects to multisensory conflicts (i.e., visuo-tactile, audio-tactile, visuo-cardiac) in virtual reality (VR) that involve the participant's torso in a paradigm known as the full-body illusion (FBI). Using a modified FBI paradigm, we found that synchrony of visuo-respiratory stimulation (i.e., a flashing outline surrounding an avatar in VR; the flash intensity depending on breathing), is also able to modulate BSC by increasing self-location and breathing agency toward the virtual body. Our aim was to investigate such visuo-respiratory effects and determine whether respiratory motor commands contributes to BSC, using non-invasive mechanical ventilation (i.e., machine-delivered breathing). Seventeen healthy participants took part in a visuo-respiratory FBI paradigm and performed the FBI during two breathing conditions: (a) "active breathing" (i.e., participants actively initiate machine-delivered breaths) and (b) "passive breathing" (i.e., breaths' timing was determined by the machine). Respiration rate, tidal volume, and their variability were recorded. In line with previous results, participants experienced subjective changes in self-location, breathing agency, and self-identification toward the avatar's body, when presented with synchronous visuo-respiratory stimulation. Moreover, drift in self-location was reduced and tidal volume variability were increased by asynchronous visuo-respiratory stimulations. Such effects were not modulated by breathing control manipulations. Our results extend previous FBI findings showing that visuo-respiratory stimulation affects BSC, independently from breathing motor command initiation. Also, variability of respiratory parameters was influenced by visuo-respiratory feedback and might reduce breathing discomfort. Further exploration of such findings might inform the development of respiratory therapeutic tools using VR in patients.


Asunto(s)
Ilusiones/fisiología , Interocepción/fisiología , Propiocepción/fisiología , Respiración , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Estimulación Física , Respiración Artificial , Realidad Virtual , Adulto Joven
18.
Front Psychol ; 11: 599429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33536971

RESUMEN

Adopting the perspective of another person is an important aspect of social cognition and has been shown to depend on multisensory signals from one's own body. Recent work suggests that interoceptive signals not only contribute to own-body perception and self-consciousness, but also to empathy. Here we investigated if social cognition - in particular adopting the perspective of another person - can be altered by a systematic manipulation of interoceptive cues and further, if this effect depends on empathic ability. The own-body transformation task (OBT) - wherein participants are instructed to imagine taking the perspective and position of a virtual body presented on a computer screen - offers an effective way to measure reaction time differences linked to the mental effort of taking an other's perspective. Here, we adapted the OBT with the flashing of a silhouette surrounding the virtual body, either synchronously or asynchronously with the timing of participants' heartbeats. We evaluated the impact of this cardio-visual synchrony on reaction times and accuracy rates in the OBT. Empathy was assessed with the empathy quotient (EQ) questionnaire. Based on previous work using the cardio-visual paradigm, we predicted that synchronous (vs. asynchronous) cardio-visual stimulation would increase self-identification with the virtual body and facilitate participants' ability to adopt the virtual body's perspective, thereby enhancing performance on the task, particularly in participants with higher empathy scores. We report that participants with high empathy showed significantly better performance during the OBT task during synchronous versus asynchronous cardio-visual stimulation. Moreover, we found a significant positive correlation between empathic ability and the synchrony effect (the difference in reaction times between the asynchronous and synchronous conditions). We conclude that synchronous cardio-visual stimulation between the participant's body and a virtual body during an OBT task makes it easier to adopt the virtual body's perspective, presumably based on multisensory integration processes. However, this effect depended on empathic ability, suggesting that empathy, interoception and social perspective taking are inherently linked.

19.
Cortex ; 120: 212-222, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31330470

RESUMEN

Heterotopagnosia-without-Autotopagnosia (HwA) is characterized by the incapacity to point to body parts on others, but not on one's own body. This has been classically interpreted as related to a self-other distinction, with impaired visual representations of other bodies seen in third person perspective (3PP), besides spared own body somatosensory representations in 1PP. However, HwA could be impacted by a deficit in the integration of visual and somatosensory information in space, that are spatially congruent in the case of one's own body, but not for others' body. Here, we test this hypothesis in a rare neurological patient with HwA, H+, as well as in a control patient with a comparable neuropsychological profile, but without HwA, and in age-matched healthy controls, in two experiments. First, we assessed body part recognition in a new task where somatosensory information from the participant's body and visual information from the target body shown in virtual reality was never aligned in space. Results show that, differently from the flawless performance in controls, H+ committed errors for not only the body of others in 3PP, but for all conditions where the information related to the real and the target body was not spatially congruent. Then, we tested whether the integration between these multisensory bodily cues in space, as during visuo-tactile stimulation in the full-body illusion, improves the patient's performance. Data show that after the stimulation prompting visuo-tactile integration, but not in control conditions, the patient's abilities to process body parts improved up to normal level, thus confirming and extending the first findings. Altogether, these results support a new interpretation of HwA as linked to the matching between somatosensory inputs from one's body and visual information from a body seen at a distance, and encourage the application of multisensory stimulation and virtual reality for the treatment of body-related disorders.


Asunto(s)
Agnosia/psicología , Trastornos Somatosensoriales/psicología , Percepción Visual , Agnosia/complicaciones , Agnosia/terapia , Imagen Corporal , Señales (Psicología) , Humanos , Ilusiones , Malformaciones Arteriovenosas Intracraneales/complicaciones , Malformaciones Arteriovenosas Intracraneales/psicología , Malformaciones Arteriovenosas Intracraneales/cirugía , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Desempeño Psicomotor , Reconocimiento en Psicología , Trastornos Somatosensoriales/complicaciones , Trastornos Somatosensoriales/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Rehabilitación de Accidente Cerebrovascular , Tacto
20.
PLoS One ; 14(3): e0197763, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30845269

RESUMEN

Episodic memories (EMs) are recollections of contextually rich and personally relevant past events. EM has been linked to the sense of self, allowing one to mentally travel back in subjective time and re-experience past events. However, the sense of self has recently been linked to online multisensory processing and bodily self-consciousness (BSC). It is currently unknown whether EM depends on BSC mechanisms. Here, we used a new immersive virtual reality (VR) system that maintained the perceptual richness of life episodes and fully controlled the experimental stimuli during encoding and retrieval, including the participant's body. Our data reveal a classical EM finding, which shows that memory for complex real-life like scenes decays over time. However, here we also report a novel finding that delayed retrieval performance can be enhanced when participants view their body as part of the virtual scene during encoding. This body effect was not observed when no virtual body or a moving control object was shown, thereby linking the sense of self, and BSC in particular, to EMs. The present VR methodology and the present behavioral findings will enable to study key aspects of EM in healthy participants and may be especially beneficial for the restoration of self-relevant memories in future experiments.


Asunto(s)
Imagen Corporal/psicología , Memoria Episódica , Realidad Virtual , Adulto , Emociones , Femenino , Humanos , Masculino , Recuerdo Mental , Modelos Neurológicos , Modelos Psicológicos , Estimulación Luminosa , Autoimagen , Interfaz Usuario-Computador , Percepción Visual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...