Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1275136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077315

RESUMEN

Introduction: People living with HIV (PLHIV) are characterized by functional reprogramming of innate immune cells even after long-term antiretroviral therapy (ART). In order to assess technical feasibility of omics technologies for application to larger cohorts, we compared multiple omics data layers. Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics, chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation were performed in a small number of blood samples derived from PLHIV and healthy controls from the 200-HIV cohort study. Results: Single-cell RNA-seq analysis revealed that most immune cells in peripheral blood of PLHIV are altered in their transcriptomes and that a specific functional monocyte state previously described in acute HIV infection is still existing in PLHIV while other monocyte cell states are only occurring acute infection. Further, a reverse transcriptome approach on a rather small number of PLHIV was sufficient to identify drug candidates for reversing the transcriptional phenotype of monocytes in PLHIV. Discussion: These scientific findings and technological advancements for clinical application of single-cell transcriptomics form the basis for the larger 2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk and single-cell transcriptomics will be included as the leading technology to determine disease endotypes in PLHIV and to predict disease trajectories and outcomes.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Fármacos Anti-VIH/uso terapéutico , Estudios de Cohortes , Monocitos , Estudios Multicéntricos como Asunto
2.
Genome Med ; 13(1): 7, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441124

RESUMEN

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Asunto(s)
COVID-19/patología , Neutrófilos/metabolismo , Transcriptoma , Antivirales/uso terapéutico , COVID-19/virología , Estudios de Casos y Controles , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Humanos , Neutrófilos/citología , Neutrófilos/inmunología , Fenotipo , Análisis de Componente Principal , ARN/sangre , ARN/química , ARN/metabolismo , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Regulación hacia Arriba , Tratamiento Farmacológico de COVID-19
3.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32810438

RESUMEN

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Asunto(s)
Infecciones por Coronavirus/inmunología , Células Mieloides/inmunología , Mielopoyesis , Neumonía Viral/inmunología , Adulto , Anciano , Antígenos CD11/genética , Antígenos CD11/metabolismo , COVID-19 , Células Cultivadas , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Femenino , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Células Mieloides/citología , Pandemias , Neumonía Viral/sangre , Neumonía Viral/patología , Proteoma/genética , Proteoma/metabolismo , Proteómica , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...