Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 143(10): 895-911, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37890146

RESUMEN

ABSTRACT: A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αß+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αß+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αß+ memory T cells to improve the outcome in patients with MM.


Asunto(s)
Antineoplásicos , Antígenos CD8 , Células Madre Pluripotentes Inducidas , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno de Maduración de Linfocitos B/metabolismo , Linfocitos T Citotóxicos , Antineoplásicos/metabolismo
2.
Nat Commun ; 11(1): 2859, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503973

RESUMEN

Mature double negative (DN) T cells are a population of αß T cells that lack CD4 and CD8 coreceptors and contribute to systemic lupus erythematosus (SLE). The splenic marginal zone macrophages (MZMs) are important for establishing immune tolerance, and loss of their number or function contributes to the progression of SLE. Here we show that loss of MZMs impairs the tolerogenic clearance of apoptotic cells and alters the serum cytokine profile, which in turn provokes the generation of DN T cells from self-reactive CD8+ T cells. Increased Ki67 expression, narrowed TCR V-beta repertoire usage and diluted T-cell receptor excision circles confirm that DN T cells from lupus-prone mice and patients with SLE undergo clonal proliferation and expansion in a self-antigen dependent manner, which supports the shared mechanisms for their generation. Collectively, our results provide a link between the loss of MZMs and the expansion of DN T cells, and indicate possible strategies to prevent the development of SLE.


Asunto(s)
Autoantígenos/inmunología , Interleucina-17/metabolismo , Lupus Eritematoso Sistémico/inmunología , Subgrupos de Linfocitos T/inmunología , Traslado Adoptivo , Animales , Autoantígenos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Tolerancia Inmunológica , Antígeno Ki-67/inmunología , Antígeno Ki-67/metabolismo , Lupus Eritematoso Sistémico/sangre , Macrófagos/inmunología , Ratones , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/metabolismo
3.
Lab Chip ; 18(20): 3129-3143, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30183789

RESUMEN

Microfluidic culture has the potential to revolutionize cancer diagnosis and therapy. Indeed, several microdevices are being developed specifically for clinical use to test novel cancer therapeutics. To be effective, these platforms need to replicate the continuous interactions that exist between tumor cells and non-tumor cell elements of the tumor microenvironment through direct cell-cell or cell-matrix contact or by the secretion of signaling factors such as cytokines, chemokines and growth factors. Given the challenges of personalized or precision cancer therapy, especially with the advent of novel immunotherapies, a critical need exists for more sophisticated ex vivo diagnostic systems that recapitulate patient-specific tumor biology with the potential to predict response to immune-based therapies in real-time. Here, we present details of a method to screen for the response of patient tumors to immune checkpoint blockade therapy, first reported in Jenkins et al. Cancer Discovery, 2018, 8, 196-215, with updated evaluation of murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS), including evaluation of the requirement for 3D microfluidic culture in MDOTS, demonstration of immune-checkpoint sensitivity of PDOTS, and expanded evaluation of tumor-immune interactions using RNA-sequencing to infer changes in the tumor-immune microenvironment. We also examine some potential improvements to current systems and discuss the challenges in translating such diagnostic assays to the clinic.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Inmunidad , Dispositivos Laboratorio en un Chip , Esferoides Celulares/inmunología , Animales , Línea Celular Tumoral , Ratones
4.
Mol Cancer Ther ; 16(12): 2849-2861, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28878028

RESUMEN

Prognosis of triple-negative breast cancer (TNBC) remains poor. To identify shared and selective vulnerabilities of basal-like TNBC, the most common TNBC subtype, a directed siRNA lethality screen was performed in 7 human breast cancer cell lines, focusing on 154 previously identified dependency genes of 1 TNBC line. Thirty common dependency genes were identified, including multiple proteasome and RNA splicing genes, especially those associated with the U4/U6.U5 tri-snRNP complex (e.g., PRPF8, PRPF38A). PRPF8 or PRPF38A knockdown or the splicing modulator E7107 led to widespread intronic retention and altered splicing of transcripts involved in multiple basal-like TNBC dependencies, including protein homeostasis, mitosis, and apoptosis. E7107 treatment suppressed the growth of basal-A TNBC cell line and patient-derived basal-like TNBC xenografts at a well-tolerated dose. The antitumor response was enhanced by adding the proteasome inhibitor bortezomib. Thus, inhibiting both splicing and the proteasome might be an effective approach for treating basal-like TNBC. Mol Cancer Ther; 16(12); 2849-61. ©2017 AACR.


Asunto(s)
Empalme del ARN/genética , Neoplasias de la Mama Triple Negativas/genética , Proliferación Celular , Femenino , Humanos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/mortalidad
5.
J Am Soc Nephrol ; 28(12): 3579-3589, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28814511

RESUMEN

Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-ß signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-ß-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-ß signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.


Asunto(s)
Riñón/patología , Fosfolipasa D/metabolismo , Animales , Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Ácido Fólico/efectos adversos , Biblioteca de Genes , Silenciador del Gen , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Sistema Inmunológico , Riñón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/metabolismo , Receptor trkA/metabolismo , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...