Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2024): 20232811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864325

RESUMEN

Pesticides have been identified as major drivers of insect biodiversity loss. Thus, the study of their effects on non-pest insect species has attracted a lot of attention in recent decades. In general toxicology, the 'gold standard' to assess the toxicity of a substance is to measure mass-specific LD50 (i.e. median lethal dose per unit body mass). In entomology, reviews attempting to compare these data across all available studies are lacking. To fill this gap in knowledge, we performed a systematic review of the lethality of imidacloprid for adult insects. Imidacloprid is possibly the most extensively studied insecticide in recent times, yet we found that little is comparable across studies, owing to both methodological divergence and missing estimates of body mass. By accounting for body mass whenever possible, we show how imidacloprid sensitivity spans across an apparent range of approximately six orders of magnitude across insect species. Very high variability within species can also be observed owing to differences in exposure methods and observation time. We suggest that a more comparable and comprehensive approach has both biological and economic relevance. Ultimately, this would help to identify differences that could direct research towards preventing non-target species from being negatively affected.


Asunto(s)
Imidazoles , Insectos , Insecticidas , Neonicotinoides , Nitrocompuestos , Especificidad de la Especie , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Animales , Insecticidas/toxicidad , Insectos/efectos de los fármacos , Imidazoles/toxicidad , Dosificación Letal Mediana
2.
Ecotoxicology ; 32(10): 1247-1256, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38062283

RESUMEN

Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape's production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.


Asunto(s)
Insecticidas , Abejas , Animales , Insecticidas/toxicidad , Insecticidas/análisis , Glucosinolatos , Neonicotinoides/toxicidad , Néctar de las Plantas , Semillas/química , Polinización
3.
PLoS One ; 17(9): e0273851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36074788

RESUMEN

Neonicotinoid insecticides applied to flowering crops can have negative impacts on bees, with implications for crop pollination. To assess if exposure to the neonicotinoid clothianidin via a treated crop (rapeseed) affected bee behaviour, pollination performance (to strawberry), and bee reproduction, we provided each of 12 outdoor cages with rapeseed (autumn-sown plants complemented with a few spring-sown plants to extend the flowering period) grown from either clothianidin-treated or untreated (control) seeds, together with strawberry plants and a small population of red mason bees (Osmia bicornis). We expected clothianidin to reduce bee foraging activity, resulting in impaired strawberry pollination and bee reproduction. During the early stage of the experiment, we observed no difference between treatments in the length of entire foraging trips, or the combined number of rapeseed and strawberry flowers that the bees visited during these trips. During the later stage of the experiment, we instead determined the time a female took to visit 10 rapeseed flowers, as a proxy for foraging performance. We found that they were 10% slower in clothianidin cages. Strawberries weighed less in clothianidin cages, suggesting reduced pollination performance, but we were unable to relate this to reduced foraging activity, because the strawberry flowers received equally many visits in the two treatments. Clothianidin-exposed females sealed their nests less often, but offspring number, sex ratio and weight were similar between treatments. Observed effects on bee behaviour appeared by the end of the experiment, possibly because of accumulated effects of exposure, reduced bee longevity, or higher sensitivity of the protocols we used during the later phase of the experiment. Although the lack of a mechanistic explanation calls for interpreting the results with cautiousness, the lower strawberry weight in clothianidin cages highlights the importance of understanding complex effects of plant protection products, which could have wider consequences than those on directly exposed organisms.


Asunto(s)
Brassica napus , Brassica rapa , Fragaria , Insecticidas , Animales , Abejas , Femenino , Flores/química , Guanidinas , Insecticidas/farmacología , Neonicotinoides/toxicidad , Polinización , Semillas/química , Tiazoles
4.
Evol Appl ; 15(3): 365-382, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35386397

RESUMEN

The global movement of bees for agricultural pollination services can affect local pollinator populations via hybridization. When commercial bumblebees are of the same species but of different geographic origin, intraspecific hybridization may result in beneficial integration of new genetic variation, or alternatively may disrupt locally adapted gene complexes. However, neither the existence nor the extent of genomic introgression and evolutionary divergence between wild and commercial bumblebees is fully understood. We obtained whole-genome sequencing data from wild and commercial Bombus terrestris collected from sites in Southern Sweden with and without long-term use of commercially imported B. terrestris. We search for evidence of introgression, dispersal and genome-wide differentiation in a comparative genomic analysis of wild and commercial bumblebees. Commercial B. terrestris were found in natural environments near sites where commercial bumblebees were used, as well as drifting wild B. terrestris in commercial bumblebee colonies. However, we found no evidence for widespread, recent genomic introgression of commercial B. terrestris into local wild conspecific populations. We found that wild B. terrestris had significantly higher nucleotide diversity (Nei's pi, π), while the number of segregating sites (Watterson's theta, θw) was higher in commercial B. terrestris. A highly divergent region on chromosome 11 was identified in commercial B. terrestris and found to be enriched with structural variants. The genes present in this region are involved in flight muscle contraction and structure and pathogen immune response, providing evidence for differing evolutionary processes operating in wild and commercial B. terrestris. We did not find evidence for recent introgression, suggesting that co-occurring commercial B. terrestris have not disrupted evolutionary processes in wild B. terrestris populations.

5.
PLoS One ; 16(4): e0250056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33909661

RESUMEN

A recurrent concern in nature conservation is the potential competition for forage plants between wild bees and managed honey bees. Specifically, that the highly sophisticated system of recruitment and large perennial colonies of honey bees quickly exhaust forage resources leading to the local extirpation of wild bees. However, different species of bees show different preferences for forage plants. We here summarize known forage plants for honey bees and wild bee species at national scale in Denmark. Our focus is on floral resources shared by honey bees and wild bees, with an emphasis on both threatened wild bee species and foraging specialist species. Across all 292 known bee species from Denmark, a total of 410 plant genera were recorded as forage plants. These included 294 plant genera visited by honey bees and 292 plant genera visited by different species of wild bees. Honey bees and wild bees share 176 plant genera in Denmark. Comparing the pairwise niche overlap for individual bee species, no significant relationship was found between their overlap and forage specialization or conservation status. Network analysis of the bee-plant interactions placed honey bees aside from most other bee species, specifically the module containing the honey bee had fewer links to any other modules, while the remaining modules were more highly inter-connected. Despite the lack of predictive relationship from the pairwise niche overlap, data for individual species could be summarized. Consequently, we have identified a set of operational parameters that, based on a high foraging overlap (>70%) and unfavorable conservation status (Vulnerable+Endangered+Critically Endangered), can guide both conservation actions and land management decisions in proximity to known or suspected populations of these species.


Asunto(s)
Abejas , Flores , Polen , Polinización , Animales , Conservación de los Recursos Naturales , Dinamarca , Especies en Peligro de Extinción
6.
Glob Chang Biol ; 24(6): 2607-2621, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29282822

RESUMEN

Land-use changes, pollution and climate warming during the 20th century have caused changes in biodiversity across the world. However, in many cases, the environmental drivers are poorly understood. To identify and rank the drivers currently causing broad-scale floristic changes in N Europe, we analysed data from two vascular plant surveys of 200 randomly selected 2.5 × 2.5 km grid-squares in Scania, southernmost Sweden, conducted 1989-2006 and 2008-2015, respectively, and related the change in frequency (performance) of the species to a wide range of species-specific plant traits. We chose traits representing all plausible drivers of recent floristic changes: climatic change (northern distribution limit, flowering time), land-use change (light requirement, response to grazing/mowing, response to soil disturbance), drainage (water requirement), acidification (pH optimum), nitrogen deposition and eutrophication (N requirement, N fixation ability, carnivory, parasitism, mycorrhizal associations), pollinator decline (mode of reproduction) and changes in CO2 levels (photosynthetic pathway). Our results suggest that climate warming and changes in land-use were the main drivers of changes in the flora during the last decades. Climate warming appeared as the most influential driver, with northern distribution limit explaining 30%-60% of the variance in the GLMM models. However, the relative importance of the drivers differed among habitat types, with grassland species being affected the most by cessation of grazing/mowing and species of ruderal habitats by on-going concentration of both agriculture and human population to the most productive soils. For wetland species, only pH optimum was significantly related to species performance, possibly an effect of the increasing humification of acidic water bodies. An observed relative decline of mycorrhizal species may possibly be explained by decreasing nitrogen deposition resulting in less competition for phosphorus. We found no effect of shortage or decline of pollinating lepidopterans and bees.


Asunto(s)
Agricultura , Biodiversidad , Cambio Climático , Embryophyta/fisiología , Dispersión de las Plantas , Ecosistema , Embryophyta/crecimiento & desarrollo , Suecia
7.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27881750

RESUMEN

While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences).


Asunto(s)
Abejas , Insectos , Polinización , Agricultura/métodos , Animales , Brassica napus , Productos Agrícolas , Flores , Dinámica Poblacional
8.
Oecologia ; 180(3): 759-69, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26650584

RESUMEN

Insect pollination, despite its potential to contribute substantially to crop production, is not an integrated part of agronomic planning. A major reason for this are knowledge gaps in the contribution of pollinators to yield, which partly result from difficulties in determining area-based estimates of yield effects from insect pollination under field conditions. We have experimentally manipulated honey bee Apis mellifera densities at 43 oilseed rape Brassica napus fields over 2 years in Scandinavia. Honey bee hives were placed in 22 fields; an additional 21 fields without large apiaries in the surrounding landscape were selected as controls. Depending on the pollination system in the parental generation, the B. napus cultivars in the crop fields are classified as either open-pollinated or first-generation hybrids, with both types being open-pollinated in the generation of plants cultivated in the fields. Three cultivars of each type were grown. We measured the activity of flower-visiting insects during flowering and estimated yields by harvesting with small combine harvesters. The addition of honey bee hives to the fields dramatically increased abundance of flower-visiting honey bees in those fields. Honey bees affected yield, but the effect depended on cultivar type (p = 0.04). Post-hoc analysis revealed that open-pollinated cultivars, but not hybrid cultivars, had 11% higher yields in fields with added honey bees than those grown in the control fields (p = 0.07). To our knowledge, this is the first whole-field study in replicated landscapes to assess the benefit of insect pollination in oilseed rape. Our results demonstrate that honey bees have the potential to increase oilseed rape yields, thereby emphasizing the importance of pollinator management for optimal cultivation of oilseed rape.


Asunto(s)
Abejas , Biomasa , Brassica napus/fisiología , Polinización , Estaciones del Año , Animales , Brassica napus/crecimiento & desarrollo , Flores , Insectos , Países Escandinavos y Nórdicos , Especificidad de la Especie
9.
Proc Natl Acad Sci U S A ; 113(1): 146-51, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26621730

RESUMEN

Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Insectos/fisiología , Polinización , Animales , Hormigas/fisiología , Abejas/fisiología , Ecosistema , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Avispas/fisiología
10.
Oecologia ; 179(2): 509-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26085467

RESUMEN

Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.


Asunto(s)
Abejas/fisiología , Caryophyllaceae/fisiología , Ecosistema , Polinización , Agricultura , Animales , Conducta Animal , Flores/fisiología , Polen , Semillas
11.
Nature ; 521(7550): 77-80, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25901681

RESUMEN

Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid ß-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/fisiología , Brassica rapa , Insecticidas/efectos adversos , Semillas , Animales , Animales Salvajes/fisiología , Abejas/crecimiento & desarrollo , Brassica rapa/química , Productos Agrícolas/química , Femenino , Guanidinas/efectos adversos , Guanidinas/farmacología , Guanidinas/toxicidad , Insecticidas/farmacología , Insecticidas/toxicidad , Masculino , Neonicotinoides , Comportamiento de Nidificación/efectos de los fármacos , Nitrilos/efectos adversos , Nitrilos/farmacología , Nitrilos/toxicidad , Néctar de las Plantas/química , Polen/química , Polinización , Densidad de Población , Piretrinas/efectos adversos , Piretrinas/farmacología , Piretrinas/toxicidad , Reproducción/efectos de los fármacos , Reproducción/fisiología , Semillas/química , Suecia , Tiazoles/efectos adversos , Tiazoles/farmacología , Tiazoles/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...