Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Target Oncol ; 18(2): 269-285, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36826464

RESUMEN

BACKGROUND: Patients with triple-negative breast cancer (TNBC) expressing the androgen receptor (AR) respond poorly to neoadjuvant chemotherapy, although AR antagonists have shown promising clinical activity, suggesting these tumors are AR-dependent. cAMP responsive element binding protein (CREB)-binding protein (CBP) and p300 are transcriptional co-activators for the AR, a key driver of AR+ breast and prostate cancer, and may provide a novel therapeutic target in AR+ TNBC. OBJECTIVES: The aim of this study was to determine the therapeutic potential of FT-6876, a new CBP/p300 bromodomain inhibitor, in breast cancer models with a range of AR levels in vitro and in vivo. METHODS: Effects of FT-6876 on the CBP/p300 pathway were determined by combining chromatin immunoprecipitation (ChIP) with precision run-on sequencing (PRO-seq) complemented with H3K27 acetylation (Ac) and transcriptional profiling. The antiproliferative effect of FT-6876 was also measured in vitro and in vivo. RESULTS: We describe the discovery of FT-6876, a potent and selective CBP/p300 bromodomain inhibitor. The combination of ChIP and PRO-seq confirmed the reduction in H3K27Ac at specific promoter sites concurrent with a decrease in CBP/p300 on the chromatin and a reduction in nascent RNA and enhancer RNA. This was associated with a time- and concentration-dependent reduction in H3K37Ac associated with a decrease in AR and estrogen receptor (ER) target gene expression. This led to a time-dependent growth inhibition in AR+ models, correlated with AR expression. Tumor growth inhibition was also observed in AR+ tumor models of TNBC and ER+ breast cancer subtypes with consistent pharmacokinetics and pharmacodynamics. CONCLUSION: Our findings demonstrate FT-6876 as a promising new CBP/p300 bromodomain inhibitor, with efficacy in preclinical models of AR+ breast cancer.


Asunto(s)
Receptores Androgénicos , Neoplasias de la Mama Triple Negativas , Masculino , Humanos , Receptores Androgénicos/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Unión Proteica , ARN/metabolismo
2.
Bioorg Med Chem Lett ; 29(16): 2375-2382, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235261

RESUMEN

Mcl-1 is an anti-apoptotic protein overexpressed in hematological malignancies and several human solid tumors. Small molecule inhibition of Mcl-1 would offer an effective therapy to Mcl-1 mediated resistance. Subsequently, it has been the target of extensive research in the pharmaceutical industry. The discovery of a novel class of Mcl-1 small molecule inhibitors is described beginning with a simple biaryl sulfonamide hit derived from a high through put screen. A medicinal chemistry effort aided by SBDD generated compounds capable of disrupting the Mcl-1/Bid protein-protein interaction in vitro. The crystal structure of the Mcl-1 bound ligand represents a unique binding mode to the BH3 binding pocket where binding affinity is achieved, in part, through a sulfonamide oxygen/Arg263 interaction. The work highlights the some of the key challenges in designing effective protein-protein inhibitors for the Bcl-2 class of proteins.


Asunto(s)
Descubrimiento de Drogas , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
3.
ACS Med Chem Lett ; 8(8): 847-852, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835800

RESUMEN

A protein structure-guided drug design approach was employed to develop small molecule inhibitors of the BET family of bromodomains that were distinct from the known (+)-JQ1 scaffold class. These efforts led to the identification of a series of substituted benzopiperazines with structural features that enable interactions with many of the affinity-driving regions of the bromodomain binding site. Lipophilic efficiency was a guiding principle in improving binding affinity alongside drug-like physicochemical properties that are commensurate with oral bioavailability. Derived from this series was tool compound FT001, which displayed potent biochemical and cellular activity, translating to excellent in vivo activity in a mouse xenograft model (MV-4-11).

4.
ACS Chem Neurosci ; 3(1): 50-68, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22267984

RESUMEN

The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties efficiently are presented.

5.
J Med Chem ; 55(3): 1082-105, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22168626

RESUMEN

The Ras/RAF/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway plays a central role in the regulation of cell growth, differentiation, and survival. Expression of mutant BRAF(V600E) results in constitutive activation of the MAPK pathway, which can lead to uncontrolled cellular growth. Herein, we describe an SAR optimization campaign around a series of quinazoline derived BRAF(V600E) inhibitors. In particular, the bioisosteric replacement of a metabolically sensitive tert-butyl group with fluorinated alkyl moieties is described. This effort led directly to the identification of a clinical candidate, compound 40 (CEP-32496). Compound 40 exhibits high potency against several BRAF(V600E)-dependent cell lines and selective cytotoxicity for tumor cell lines expressing mutant BRAF(V600E) versus those containing wild-type BRAF. Compound 40 also exhibits an excellent PK profile across multiple preclinical species. In addition, significant oral efficacy was observed in a 14-day BRAF(V600E)-dependent human Colo-205 tumor xenograft mouse model, upon dosing at 30 and 100 mg/kg BID.


Asunto(s)
Isoxazoles/síntesis química , Compuestos de Fenilurea/síntesis química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Quinazolinas/síntesis química , Administración Oral , Animales , Unión Competitiva , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perros , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Isoxazoles/farmacocinética , Isoxazoles/farmacología , Macaca fascicularis , Masculino , Ratones , Ratones Desnudos , Microsomas Hepáticos , Modelos Moleculares , Mutación , Trasplante de Neoplasias , Compuestos de Fenilurea/farmacocinética , Compuestos de Fenilurea/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Quinazolinas/farmacocinética , Quinazolinas/farmacología , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Trasplante Heterólogo
7.
Bioorg Med Chem Lett ; 21(2): 660-3, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21190849

RESUMEN

Elaboration of the SAR around a series of 2,4-diaminopyrimidines led to a number of c-Met inhibitors in which kinase selectivity was modulated by substituents appended on the C4-aminobenzamide ring and the nature of the C2-aminoaryl ring. Further lead optimization of the C2-aminoaryl group led to benzoxazepine analogs whose pharmaceutical properties were modulated by the nature of the substituent on the benzoxazepine nitrogen. Tumor stasis (with partial regressions) were observed when an orally bioavailable analog was evaluated in a GTL-16 tumor xenograft mouse model. Subsequent PK/PD studies suggested that a metabolite contributed to the overall in vivo response.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Pirimidinas/química , Pirimidinas/uso terapéutico , Administración Oral , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Humanos , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Anticancer Agents Med Chem ; 10(1): 7-27, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20015007

RESUMEN

The scatter factor/hepatocyte growth factor (HGF)-c-Met axis is involved in the malignant phenotype of various tumor types via activation of a wide range of autocrine and paracrine processes. Autocrine activation of tumor cell c-Met receptors enhances tumor cell proliferation, angiogenesis, invasion/metastasis and resistance to apoptosis and cytotoxic therapies. In addition, tumor and stroma cell-derived HGF functions as a potent angiogenic factor. Therefore, the HGF-c-Met axis is critically involved in multiple facets of normal cellular growth and homeostasis and activated in a dysregulated manner in a variety of cancers. Consequently, inhibiting the HGF-c-Met axis would be anticipated to have potent anti-tumor effects in many cancers through multiple complimentary mechanisms including increased sensitivity to current cytotoxic chemo-and radiotherapies. The acceptance of c-Met as a tractable target for cancer therapy has fostered intensive drug discovery efforts across the pharmaceutical industry. This research has led to 20 published crystal structures (with and without ligands) that revealed two distinct binding modes for ATP-competitive inhibitors: Type I ligands which assumes a U shape geometry through interactions with both hinge and activation loop residue Y1230, and Type II ligands which adopt a more extended orientation, either binding a conventional DFG-out conformation or protein conformations with varying degrees of 'DFG-out' character. Nearly a dozen small molecule c-Met inhibitors have entered human clinical trials ranging from Type I inhibitors solely selective for c-Met to Type I inhibitors with broader kinase activities to Type II inhibitors with "spectrum selective" kinase activity. The identification, profiles and properties of these clinical candidates are summarized in this review.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Antineoplásicos/química , Humanos , Ligandos , Modelos Moleculares , Proteínas Proto-Oncogénicas c-met/química
12.
J Med Chem ; 49(25): 7278-89, 2006 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17149858

RESUMEN

The series of trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines have been widely investigated as opioid receptor antagonists. One of our research goals was to explore the bioactive conformation of the N-phenethyl trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine derivative 3, prototypical mu-opioid antagonist in this series. In this effort, the rotational degrees of freedom of the N-substituent of 3 were limited by incorporation of an ethylene bridge between the piperidine 2- or 6-position of 3 and the benzylic position of the N-phenethyl moiety. The overall modification led to a novel series of fused bicyclic derivatives of the octahydroquinolizine chemical class, conformationally restricted analogue of 3. The constrained analogues 6 and 9 showed high affinity toward the mu-opioid receptor. Compound 6 was found to be a mu-opioid antagonist, whereas the constrained analogue 9 displayed potent mu-agonist activity in vitro. This study provides additional information about the molecular determinants for mu recognition, the structural features affecting ligand binding, and the structure function relationships.


Asunto(s)
Piperidinas/síntesis química , Receptores Opioides mu/antagonistas & inhibidores , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Piperidinas/química , Piperidinas/farmacología , Ensayo de Unión Radioligante , Receptores Opioides mu/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
13.
Drug Discov Today ; 11(23-24): 1107-14, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17129830

RESUMEN

The modern drug discovery process is steadily becoming more information driven. Structural, physicochemical and ADME-Tox property profiles of reference (successful) ligands, along with structural information of their target proteins, have been extremely useful for early-stage drug discovery. Recently, databases of known biologically active ligands (knowledge bases) have become more focused toward different protein-target classes. The number of new chemoinformatics tools used to analyze structures and properties of successful molecules has also increased enormously. Scientists in this area are exploring new physicochemical properties and appropriate drug sets to understand druglike properties. In this review, the various uses of the ligand knowledge bases in the drug discovery process have been critically reviewed.


Asunto(s)
Diseño de Fármacos , Bases del Conocimiento , Informática Médica/métodos , Preparaciones Farmacéuticas/química , Industria Farmacéutica/métodos , Humanos , Estructura Molecular , Preparaciones Farmacéuticas/administración & dosificación
15.
J Virol ; 78(7): 3663-74, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15016887

RESUMEN

Rhinoviruses are the most common infectious agents of humans. They are the principal etiologic agents of afebrile viral upper-respiratory-tract infections (the common cold). Human rhinoviruses (HRVs) comprise a genus within the family Picornaviridae. There are >100 serotypically distinct members of this genus. In order to better understand their phylogenetic relationship, the nucleotide sequence for the major surface protein of the virus capsid, VP1, was determined for all known HRV serotypes and one untyped isolate (HRV-Hanks). Phylogenetic analysis of deduced amino acid sequence data support previous studies subdividing the genus into two species containing all but one HRV serotype (HRV-87). Seventy-five HRV serotypes and HRV-Hanks belong to species HRV-A, and twenty-five HRV serotypes belong to species HRV-B. Located within VP1 is a hydrophobic pocket into which small-molecule antiviral compounds such as pleconaril bind and inhibit functions associated with the virus capsid. Analyses of the amino acids that constitute this pocket indicate that the sequence correlates strongly with virus susceptibility to pleconaril inhibition. Further, amino acid changes observed in reduced susceptibility variant viruses recovered from patients enrolled in clinical trials with pleconaril were distinct from those that confer natural phenotypic resistance to the drug. These observations suggest that it is possible to differentiate rhinoviruses naturally resistant to capsid function inhibitors from those that emerge from susceptible virus populations as a result of antiviral drug selection pressure based on sequence analysis of the drug-binding pocket.


Asunto(s)
Antivirales/metabolismo , Antivirales/farmacología , Cápside/metabolismo , Farmacorresistencia Viral , Filogenia , Rhinovirus/clasificación , Rhinovirus/efectos de los fármacos , Proteínas Virales/química , Secuencia de Aminoácidos , Sitios de Unión , Cápside/química , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Pruebas de Neutralización , Oxadiazoles/metabolismo , Oxadiazoles/farmacología , Oxazoles , Rhinovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
J Org Chem ; 64(10): 3708-3713, 1999 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-11674501

RESUMEN

The electron-transfer photochemistry of homochrysanthemol, 1, resulted exclusively in intramolecular "substitution" at the quaternary cyclopropane carbon, generating the five-membered cyclic ethers, 2 and 4. The alternative "addition" to the terminal carbon of the double bond, which would result in seven-membered cyclic ethers, 3 and 5, was not observed. Apparently, the five-membered transition state leading to 2 and 4 is significantly favored over the seven-membered one required for formation of 3 and 5. These results stand in interesting contrast to the previously established reaction pattern of chrysanthemol, 8, which is captured exclusively at the terminal vinyl carbon. The divergent regiochemistry of 1(*)(+) and 8(*)(+) (even though the tethers between vinylcyclopropane and alcohol functions differ only by a single CH(2) group) elucidates the principles governing the course of nucleophilic capture in radical cations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA