Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Am J Sports Med ; : 3635465241280984, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360333

RESUMEN

BACKGROUND: Injuries of the superficial medial collateral ligament (sMCL) and anteromedial structures of the knee result in excess valgus rotation and external tibial rotation (ER) as well as tibial translation. PURPOSE: To evaluate a flat reconstruction of the sMCL and anteromedial structures in restoring knee kinematics in the combined MCL- and anteromedial-deficient knee. STUDY DESIGN: Controlled laboratory study. METHODS: Eight cadaveric knee specimens were tested in a 6 degrees of freedom robotic test setup. Force-controlled clinical laxity tests were performed with 200 N of axial compression in 0°, 30°, 60°, and 90° of flexion: 8 N·m valgus torque, 5 N·m ER torque, 89 N anterior tibial translation (ATT) force, and an anteromedial drawer test consisting of 89 N ATT force under 5 N·m ER torque. After determining the native knee kinematics, we transected the sMCL, followed by the deep medial collateral ligament (dMCL). Subsequently, a flat reconstruction of the sMCL with anteromedial limb, mimicking the function of the anteromedial corner, was performed. Mixed linear models were used for statistical analysis (P < .05). RESULTS: Cutting of the sMCL led to statistically significant increases in laxity regarding valgus rotation, ER, and anteromedial translation in all tested flexion angles (P < .05). ATT was significantly increased in all flexion angles but not at 60° after cutting of the sMCL. A combined instability of the sMCL and dMCL led to further increased knee laxity in all tested kinematics and flexion angles (P < .05). After reconstruction, the knee kinematics were not significantly different from those of the native state. CONCLUSION: Insufficiency of the sMCL and dMCL led to excess valgus rotation, ER, ATT, and anteromedial tibial translation. A combined flat reconstruction of the sMCL and the anteromedial aspect restored this excess laxity to values not significantly different from those of the native knee. CLINICAL RELEVANCE: The presented reconstruction might lead to favorable results for patients with MCL and anteromedial injuries with an anteromedial rotatory knee instability.

2.
Am J Sports Med ; : 3635465241280985, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370699

RESUMEN

BACKGROUND: Increased tibial slope has been shown to lead to higher rates of anterior cruciate ligament graft failure. A slope-decreasing osteotomy can reduce in situ anterior cruciate ligament force and may mitigate this risk. However, how this procedure may affect the length change behavior of the medial ligamentous structures is unknown. PURPOSE/HYPOTHESIS: The purpose of this study was to examine the effect of anterior slope-modifying osteotomies on the medial ligamentous structures. It was hypothesized that (1) decreasing the tibial slope would lead to shortening of the superficial medial collateral ligament (sMCL), (2) while the fibers of the posterior oblique ligament (POL) would be unaffected. STUDY DESIGN: Descriptive laboratory study. METHODS: Eight fresh-frozen cadaveric knee specimens underwent anatomic dissection to precisely identify the medial ligamentous structures. The knees were mounted in a custom-made kinematics rig with the quadriceps muscle and iliotibial tract loaded. An anterior slope-modifying osteotomy was performed and fixed using an external fixator, which allowed modification of the wedge height between -15 and +10 mm in 5-mm increments. Threads were mounted between pins positioned at the anterior, middle, and posterior parts of the tibial and femoral attachments of the sMCL and POL. For different tibial slope modifications, length changes between the tibiofemoral pin combinations were recorded using a rotary encoder as the knee was flexed between 0° and 120°. RESULTS: All sMCL fiber regions shortened with slope reduction (P < .001) and lengthened with slope increase (P < .001), with the anterior sMCL fibers more affected than the posterior sMCL fibers. A 15-mm anterior closing-wedge high tibial osteotomy (ACWHTO) resulted in a 6.9% ± 3.0% decrease in the length of the anterior sMCL fibers compared with a 3.6% ± 2.3% decrease for the posterior sMCL fibers. A 10-mm anterior opening-wedge high tibial osteotomy (AOWHTO) increased anterior sMCL fiber length by 5.9% ± 2.3% and posterior sMCL fiber length by 1.6% ± 1.0%. The POL fibers were not significantly affected by a slope-modifying osteotomy. CONCLUSION: Tibial slope-modifying osteotomies changed the length change pattern of the sMCL such that an AOWHTO increased whereas an ACWHTO decreased the sMCL strain. This effect was most pronounced for the anterior fibers of the sMCL. The length change pattern of the POL remained unaffected by slope-modifying osteotomy. CLINICAL RELEVANCE: Surgeons should be aware that anterior tibial slope-modifying osteotomies affect the biomechanics of the sMCL. After an extensive ACWHTO, patients may develop a medial or anteromedial instability, while an AOWHTO may overconstrain the medial compartment.

3.
Am J Sports Med ; 52(12): 3030-3038, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39279271

RESUMEN

BACKGROUND: In addition to the integrity of the meniscal hoop function, both the anterior and posterior meniscus roots as well as the meniscotibial and meniscofemoral ligaments are crucial in restraining meniscal extrusion. However, the interaction and load sharing between the roots and these peripheral attachments (PAs) are not known. PURPOSES: To investigate the influence of an insufficiency of the PAs on the forces acting on a posterior medial meniscus root repair (PMMRR) in both neutral and varus alignment and to explore whether meniscal centralization reduces these forces. STUDY DESIGN: Controlled laboratory study. METHODS: In 8 fresh-frozen human cadaveric knees, an arthroscopic transosseous root repair (step 1) was performed after sectioning the posterior root of the medial meniscus. The pull-out suture was connected to a load cell to allow measurement of the forces acting on the root repair. A medial closing-wedge distal femoral osteotomy was performed to change the mechanical axis from neutral to 5° of varus alignment. The meniscus was completely released from its PAs (step 2), followed by transosseous arthroscopic centralization (step 3). Each step was tested in both neutral and varus alignment. The specimens were subjected to nondestructive dynamic varus loading under axial compression of 300 N in 0°, 15°, 30°, 45°, and 60° flexion. The changes in force acting on the PMMRR were statistically analyzed using a mixed linear model. RESULTS: Axial loading in neutral alignment led to an increase of the force of root repair of 3.1 ± 3.1 N (in 0° flexion) to 6.3 ± 4.4 N (in 60° flexion). In varus alignment, forces increased significantly from 30° (3.5 N; 95% CI, 1.1-5.8 N; P = .01) to 60° (7.1 N; 95% CI, 2.7-11.5 N; P = .007) flexion, in comparison with neutral alignment. Cutting of the PAs in neutral alignment led to a significant increase of root repair forces in all flexion angles, from 7.0 N (95% CI, 1.0-13.0 N; P = .02) to 9.1 N (95% CI, 4.1-14.1 N; P = .003), in comparison with the intact state. Varus alignment significantly increased the forces in the cut states from 4.8 N (95% CI, 1.0-8.5 N; P = .02) to 11.1 N (95% CI, 4.2-18.0 N; P = .006) from 30° to 60° flexion, in comparison with the neutral alignment. Arthroscopic centralization led to restoration of the native forces in both neutral and varus alignment, with no significant differences between the centralized and intact states. CONCLUSION: An insufficiency of the PAs of the medial meniscus, as well as varus alignment, led to increased forces acting on a PMMRR. These forces were reduced via an arthroscopic meniscal centralization. CLINICAL RELEVANCE: Performing arthroscopic meniscal centralization concomitantly with PMMRR may reduce failure of the repair by reducing the load of the root.


Asunto(s)
Artroscopía , Cadáver , Meniscos Tibiales , Soporte de Peso , Humanos , Artroscopía/métodos , Meniscos Tibiales/cirugía , Fenómenos Biomecánicos , Soporte de Peso/fisiología , Persona de Mediana Edad , Anciano , Masculino , Lesiones de Menisco Tibial/cirugía , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Femenino
4.
Artículo en Inglés | MEDLINE | ID: mdl-39258322

RESUMEN

PURPOSE: Posterior stress radiography is recommended to identify isolated or combined posterior cruciate ligament (PCL) deficiencies. The posterior drawer in internal (IR) or external rotation (ER) helps to differentiate between these combined instabilities. The purpose of this study was to evaluate posterior stress radiography (PSR) in isolated and combined PCL deficiency with IR and ER compared to PSR in neutral rotation (NR) for diagnosing combined PCL instabilities. METHODS: Six paired fresh-frozen human cadaveric legs (n = 12) were mounted in a Telos device for PSR. The tibia was rotated using an attached foot apparatus capable of rotating the foot 30° internally and externally. A posterior tibial load of 15 kp (147.1 N) was applied to the tibial tubercle at 90° knee flexion, and a lateral radiograph was obtained. This was repeated with the foot in 30° IR and ER. The PCL, posterolateral complex (PLC), and posteromedial complex (PMC) were sectioned in six knees, while the PMC was sectioned before the PLC in the other six knees. Posterior tibial displacement (PTD) was measured radiographically. Statistical analysis was performed using a two-way ANOVA and a mixed model with Bonferroni correction, and the significance was set at p < 0.05. Furthermore, intra- and interobserver reliability was determined. RESULTS: Cutting the PCL significantly increased the radiographic PTD by 9.8 ± 1.8 mm (side-to-side difference compared to the intact state of the knee, n = 12; p < 0.001). This further increased to 12.2 ± 2.3 mm (n = 6; p < 0.01) with an additional PLC deficiency and to 15.4 ± 3.4 mm (n = 6; p < 0.05) with an additional PMC deficiency. A combined PLC and PMC deficiency resulted in an increase of the PTD to 15.9 ± 4.5 mm (n = 12; p < 0.01). In the PCL/PLC deficient state, ER did not demonstrate a higher PTD, compared to the NR and IR posterior drawer. In the PCL/PMC deficient state in IR, PTD was 1.6 ± 0.7 mm (p < 0.01) higher compared to NR and 3.2 ± 1.9 mm (p < 0.05) higher compared to ER. We showed excellent intra- and interobserver reliability (0.987-0.997). CONCLUSION: Combined PCL instabilities resulted in a significant increase in posterior tibial displacement in posterior stress radiographs. However, PSR in IR or ER was unable to differentiate between these combined instabilities. Based on our data, additional stress radiographs in rotation are unlikely to provide any diagnostic benefit in the clinical setting. LEVEL OF EVIDENCE: There is no level of evidence as this study was an experimental laboratory study.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38932622

RESUMEN

PURPOSE: The purpose of this study was to analyse the influence of coronal lower limb alignment on collateral ligament strain. METHODS: Twelve fresh-frozen human cadaveric knees were used. Long-leg standing radiographs were obtained to assess lower limb alignment. Specimens were axially loaded in a custom-made kinematics rig with 200 and 400 N, and dynamic varus/valgus angulation was simulated in 0°, 30°, and 60° of knee flexion. The changes in varus/valgus angulation and strain within different fibre regions of the collateral ligaments were captured using a three-dimensional optical measuring system to examine the axis-dependent strain behaviour of the superficial medial collateral ligament (sMCL) and lateral collateral ligament (LCL) at intervals of 2°. RESULTS: The LCL and sMCL were exposed to the highest strain values at full extension (p < 0.001). Regardless of flexion angle and extent of axial loading, the ligament strain showed a strong and linear association with varus (all Pearson's r ≥ 0.98; p < 0.001) and valgus angulation (all Pearson's r ≥ -0.97; p < 0.01). At full extension and 400 N of axial loading, the anterior and posterior LCL fibres exceeded 4% ligament strain at 3.9° and 4.0° of varus, while the sMCL showed corresponding strain values of more than 4% at a valgus angle of 6.8°, 5.4° and 4.9° for its anterior, middle and posterior fibres, respectively. CONCLUSION: The strain within the native LCL and sMCL was linearly related to coronal lower limb alignment. Strain levels associated with potential ultrastructural damages to the ligaments of more than 4% were observed at 4° of varus and about 5° of valgus malalignment, respectively. When reconstructing the collateral ligaments, an additional realigning osteotomy should be considered in cases of chronic instability with a coronal malalignment exceeding 4°-5° to protect the graft and potentially reduce failures. LEVEL OF EVIDENCE: There is no level of evidence as this study was an experimental laboratory study.

6.
J Exp Orthop ; 11(3): e12039, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38826500

RESUMEN

Artificial intelligence's (AI) accelerating progress demands rigorous evaluation standards to ensure safe, effective integration into healthcare's high-stakes decisions. As AI increasingly enables prediction, analysis and judgement capabilities relevant to medicine, proper evaluation and interpretation are indispensable. Erroneous AI could endanger patients; thus, developing, validating and deploying medical AI demands adhering to strict, transparent standards centred on safety, ethics and responsible oversight. Core considerations include assessing performance on diverse real-world data, collaborating with domain experts, confirming model reliability and limitations, and advancing interpretability. Thoughtful selection of evaluation metrics suited to the clinical context along with testing on diverse data sets representing different populations improves generalisability. Partnering software engineers, data scientists and medical practitioners ground assessment in real needs. Journals must uphold reporting standards matching AI's societal impacts. With rigorous, holistic evaluation frameworks, AI can progress towards expanding healthcare access and quality. Level of Evidence: Level V.

7.
Acta Orthop ; 95: 290-297, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874493

RESUMEN

BACKGROUND AND PURPOSE: Recommendations regarding fragment-size-dependent screw fixation trajectory for coronal plane fractures of the posterior femoral condyles (Hoffa fractures) are lacking. The aim of this study was to compare the biomechanical properties of anteroposterior (AP) and crossed posteroanterior (PA) screw fixations across differently sized Hoffa fractures on human cadaveric femora. PATIENTS AND METHODS: 4 different sizes of lateral Hoffa fractures (n = 12 x 4) were created in 48 distal human femora according to the Letenneur classification: (i) type I, (ii) type IIa, (ii) type IIb, and (iv) type IIc. Based on bone mineral density (BMD), specimens were assigned to the 4 fracture clusters and each cluster was further assigned to fixation with either AP (n = 6) or crossed PA screws (n = 6) to ensure homogeneity of BMD values and comparability between the different test conditions. All specimens were biomechanically tested under progressively increasing cyclic loading until failure, capturing the interfragmentary movements via motion tracking. RESULTS: For Letenneur type I fractures, kilocycles to failure (mean difference [∆] 2.1, 95% confidence interval [CI] -1.3 to 5.5), failure load (∆ 105 N, CI -83 to 293), axial displacement (∆ 0.3 mm, CI -0.8 to 1.3), and fragment rotation (∆ 0.5°, CI -3.2 to 2.1) over 5.0 kilocycles did not differ significantly between the 2 screw trajectories. For each separate subtype of Letenneur type II fractures, fixation with crossed PA screws resulted in significantly higher kilocycles to failure (∆ 6.7, CI 3.3-10.1 to ∆ 8.9, CI 5.5-12.3) and failure load (∆ 275 N, CI 87-463 to ∆ 438, CI 250-626), as well as, less axial displacement from 3.0 kilocycles onwards (∆ 0.4°, CI 0.03-0.7 to ∆ 0.5°, CI 0.01-0.9) compared with AP screw fixation. CONCLUSION: Irrespective of the size of Letenneur type II fractures, crossed PA screw fixation provided greater biomechanical stability than AP-configured screws, whereas both screw fixation techniques demonstrated comparable biomechanical competence for Letenneur type I fractures. Fragment-size-dependent treatment strategies might be helpful to determine not only the screw configuration but also the surgical approach.


Asunto(s)
Tornillos Óseos , Cadáver , Fracturas del Fémur , Fijación Interna de Fracturas , Humanos , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Fenómenos Biomecánicos , Fracturas del Fémur/cirugía , Anciano , Femenino , Masculino , Densidad Ósea , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios de Cohortes
9.
J Exp Orthop ; 11(3): e12025, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715910

RESUMEN

Recent advances in artificial intelligence (AI) present a broad range of possibilities in medical research. However, orthopaedic researchers aiming to participate in research projects implementing AI-based techniques require a sound understanding of the technical fundamentals of this rapidly developing field. Initial sections of this technical primer provide an overview of the general and the more detailed taxonomy of AI methods. Researchers are presented with the technical basics of the most frequently performed machine learning (ML) tasks, such as classification, regression, clustering and dimensionality reduction. Additionally, the spectrum of supervision in ML including the domains of supervised, unsupervised, semisupervised and self-supervised learning will be explored. Recent advances in neural networks (NNs) and deep learning (DL) architectures have rendered them essential tools for the analysis of complex medical data, which warrants a rudimentary technical introduction to orthopaedic researchers. Furthermore, the capability of natural language processing (NLP) to interpret patterns in human language is discussed and may offer several potential applications in medical text classification, patient sentiment analysis and clinical decision support. The technical discussion concludes with the transformative potential of generative AI and large language models (LLMs) on AI research. Consequently, this second article of the series aims to equip orthopaedic researchers with the fundamental technical knowledge required to engage in interdisciplinary collaboration in AI-driven orthopaedic research. Level of Evidence: Level IV.

10.
Sportverletz Sportschaden ; 38(2): 73-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657648

RESUMEN

BACKGROUND: Studies showed changes in the central nervous system in patients who sustained an anterior cruciate ligament tear. There is a lack of evidence regarding the effectiveness of transcranial direct-current stimulation in such patients. METHODS: A sham-controlled randomised study. One group of patients (n = 6) underwent 6 weeks of sensorimotor training after an anterior cruciate ligament tear during transcranial direct-current stimulation. The stimulation consisted of 20 minutes (3 sessions/week; 2 weeks) of 2 mA anodal transcranial direct-current stimulation over the primary motor and premotor cortex. The second group (n = 6) received sham stimulation with 6 weeks of sensorimotor training. Centre of pressure deviations in the medio-lateral and anterior-posterior direction and centre of pressure velocity were measured. RESULTS: The results demonstrated a significant effect of sensorimotor training on the centre of pressure in medio-lateral and anterior-posterior direction (p=0.025) (p=0.03) in the leg in which an anterior cruciate ligament tear occurred. The type of training did not affect the results. Post-hoc tests showed no significant effect of training in the subgroups (p≥0.115). CONCLUSION: Sensorimotor training led to a decrease in sway of the centre of pressure in patients who sustained an anterior cruciate ligament tear, but the addition of anodal transcranial direct-current stimulation placed over the primary motor cortex did not potentiate the adaptive responses of the sensorimotor training.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Estimulación Transcraneal de Corriente Directa , Humanos , Proyectos Piloto , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/rehabilitación , Masculino , Femenino , Adulto , Adulto Joven , Corteza Motora/fisiología
11.
Eur J Trauma Emerg Surg ; 50(4): 1691-1699, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38568230

RESUMEN

PURPOSE: The study aims to investigate the influence of patient- and fracture-specific factors on the occurrence of complications after osteosynthesis of patella fractures and to compare knee joint function, activity, and subjective pain levels after a regular postoperative course and after complications in the medium term. METHODS: This retrospective, multicenter cohort study examined patients who received surgery for patella fracture at level 1 trauma centers between 2013 and 2018. Patient demographics and fracture-specific variables were evaluated. Final follow-up assessments included patient-reported pain scores (NRS), subjective activity and knee function scores (Tegner Activity Scale, Lysholm score, IKDC score), complications, and revisions. RESULTS: A total of 243 patients with a mean follow-up of 63.4 ± 21.3 months were included. Among them, 66.9% of patients underwent tension band wiring (TBW), 19.0% received locking plate osteosynthesis (LPO), and 14.1% underwent screw osteosynthesis (SO). A total of 38 patients (15.6%) experienced complications (TBW: 16.7%; LPO: 15.2%; SO: 11.8%). Implant-related complications of atraumatic fragment dislocation and material insufficiency/dislocation, accounted for 50% of all complications, were significantly more common after TBW than LPO (p = 0.015). No patient-specific factor was identified as a general cause for increased complications. Overall, particularly following complications such as limited range of motion or traumatic refracture, functional knee scores were significantly lower and pain levels were significantly higher at the final follow-up when a complication occurred. Implant-related complications, however, achieved functional scores comparable to a regular postoperative course without complications after revision surgery. CONCLUSION: The present study demonstrated that implant-related complications occurred significantly more often after TBW compared to LPO. The complication rates were similar in all groups.


Asunto(s)
Fijación Interna de Fracturas , Fracturas Óseas , Rótula , Complicaciones Posoperatorias , Humanos , Fijación Interna de Fracturas/efectos adversos , Masculino , Femenino , Estudios Retrospectivos , Rótula/lesiones , Rótula/cirugía , Complicaciones Posoperatorias/epidemiología , Persona de Mediana Edad , Fracturas Óseas/cirugía , Adulto , Anciano , Placas Óseas , Tornillos Óseos , Fractura de Rótula
12.
Orthop J Sports Med ; 12(4): 23259671241240375, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576875

RESUMEN

Background: Concerns regarding the primary stability of early adjustable loop button (ALB) devices for cortical fixation of tendon grafts in anterior cruciate ligament reconstruction (ACLR) have led to the development of new implant designs. Purpose: To evaluate biomechanical stability of recent ALB implants in comparison with a continuous loop button (CLB) device. Study Design: Controlled laboratory study. Methods: ACLR was performed in a porcine model (n = 40) using 2-strand porcine flexor tendons with a diameter of 8 mm. Three ALB devices (Infinity Button [ALB1 group]; Tightrope II RT [ALB2 group]; A-TACK [ALB3 group]) and 1 CLB device (FlippTack with polyethylene suture) were used for cortical tendon graft fixation. Cyclic loading (1000 cycles up to 250 N) with complete unloading were applied to the free end of the tendon graft using a uniaxial testing machine, followed by load to failure. Elongation, stiffness, yield load, and ultimate failure load were recorded and compared between the groups using a Kruskal-Wallis test with post hoc Dunn correction. Results: Elongation after 1000 cycles at 250 N was similar between groups (ALB1, 4.5 ± 0.7 mm; ALB2, 4.8 ± 0.8 mm; ALB3, 4.5 ± 0.6 mm; CLB, 4.5 ± 0.8 mm), as was load to failure (ALB1, 838 ± 109 N; ALB2, 930 ± 89 N; ALB3, 809 ± 103 N; CLB, 842 ± 80 N). Stiffness was significantly higher in the ALB1 group compared with the CLB group (262.3 ± 21.6 vs 229.3 ± 15.1 N/mm; P < .05). No significant difference was found between the 4 groups regarding yield load. Constructs failed either by rupture of the loop, breakage of the button, or rupture of the tendon. Conclusion: The tested third-generation ALB devices for cortical fixation in ACLR withstood cyclic loading with complete unloading without significant differences to a CLB device. Clinical Relevance: The third-generation ALB devices tested in the present study provided biomechanical stability comparable with that of a CLB device. Furthermore, ultimate failure loads of all tested implants exceeded the loads expected to occur in the postoperative period after ACLR.

13.
Orthop J Sports Med ; 12(3): 23259671241236783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532766

RESUMEN

Background: Bone staples have been shown previously to be a viable modality for cortical tendon graft fixation in ligament knee surgery. However, soft tissue reactions have been reported, making implant removal necessary. Magnesium alloys are a promising material for biodegradable orthopaedic implants, with mechanical properties closely resembling those of human bone. Purpose: To compare the primary stability of a biodegradable bone staple prototype made from magnesium to bone staples made from metal in the cortical fixation of tendon grafts during knee surgery. Study Design: Controlled laboratory study. Methods: Primary stability of peripheral tendon graft fixation was assessed in a porcine model of medial collateral ligament reconstruction. Two commercially available metal bone staples (Richards fixation staple with spikes [Me1] and spiked ligament staple [Me2]) were compared with a magnesium bone staple prototype for soft tissue fixation. Primary stability was assessed using a uniaxial materials testing machine. Cyclic loading at 50 and 100 N was applied for 500 cycles each, followed by load-to-failure testing. Results: After 500 cycles at 50 N, elongation was 1.5 ± 0.5 mm in the Me1 group, 1.9 ± 0.5 mm in the Me2 group, and 1.8 ± 0.4 mm in the magnesium group. After 1000 cycles of loading (500 cycles at 50 N and 500 at 100 N), elongation was 3.6 ± 0.9 mm in the Me1 group, 3.5 ± 0.6 mm in the Me2 group, and 4.1 ± 1.0 mm in the magnesium group. No significant differences regarding elongation were found between the groups. Load to failure was 352 ± 115 N in the Me1 group, 373 ± 77 N in the Me2 group, and 449 ± 92 N in the magnesium group, with no significant difference between the groups. Conclusion: In this study, the magnesium bone staples provided appropriate time-zero biomechanical primary stability in comparison with metal bone staples and may therefore be a feasible alternative for cortical fixation of tendon grafts in knee surgery. Clinical Relevance: The biodegradability of magnesium bone staples would eliminate the need for later implant removal.

14.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 978-986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431913

RESUMEN

PURPOSE: This study aimed to investigate the length change patterns of the native deep medial collateral ligament (dMCL) and potential anteromedial reconstructions (AMs) that might be added to a reconstruction of the superficial MCL (sMCL) to better understand the control of anteromedial rotatory instability (AMRI). METHODS: Insertion points of the dMCL and potential AM reconstructions were marked with pins (tibial) and eyelets (femoral) in 11 cadaveric knee specimens. Length changes between the pins and eyelets were then tested using threads in a validated kinematics rig with muscle loading of the quadriceps and iliotibial tract. Between 0° and 100° knee flexion, length change pattern of the anterior, middle and posterior part of the dMCL and simulated AM reconstructions were analysed using a rotary encoder. Isometry was tested using the total strain range (TSR). RESULTS: The tibiofemoral distance of the anterior dMCL part lengthened with flexion (+12.7% at 100°), whereas the posterior part slackened with flexion (-12.9% at 100°). The middle part behaved almost isometrically (maximum length: +2.8% at 100°). Depending on the femoral position within the sMCL footprint, AM reconstructions resulted in an increase in length as the knee flexed when a more centred position was used, irrespective of the tibial attachment position. Femoral positioning in the posterior aspect of the sMCL footprint exhibited <4% length change and was slightly less tight in flexion (min TSR = 3.6 ± 1.5%), irrespective of the tibial attachment position. CONCLUSION: The length change behaviour of potential AM reconstructions in a functionally intact knee is mainly influenced by the position of the femoral attachment, with different tibial attachments having a minimal effect on length change. Surgeons performing AM reconstructions to control AMRI would be advised to choose a femoral graft position in the posterior part of the native sMCL attachment to optimise graft length change behaviour. Given the high frequency of MCL injuries, sufficient restoration of AMRI is essential in isolated and combined ligamentous knee injuries. LEVEL OF EVIDENCE: There is no level of evidence as this study was an experimental laboratory study.


Asunto(s)
Ligamentos Colaterales , Traumatismos de la Rodilla , Humanos , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiología , Fémur/cirugía , Tibia/cirugía , Fenómenos Biomecánicos , Rango del Movimiento Articular/fisiología , Cadáver
15.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 864-871, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454816

RESUMEN

PURPOSE: To investigate the forces on a medial collateral ligament (MCL) reconstruction (MCLR) relative to the valgus alignment of the knee. METHODS: Eight fresh-frozen human cadaveric knees were subjected to dynamic valgus loading at 400 N using a custom-made kinematics rig. After resection of the superficial medial collateral ligament, a single-bundle MCLR with a hamstring tendon autograft was performed. A medial opening wedge distal femoral osteotomy was performed and fixed with an external fixator to gradually adjust the alignment in 5° increments from 0° to 10° valgus. For each degree of valgus deformity, the resulting forces acting on the MCLR were measured through a force sensor and captured in 15° increments from 0° to 60° of knee flexion. RESULTS: Irrespective of the degree of knee flexion, increasing valgus malalignment resulted in significantly increased forces acting on the MCLR compared to neutral alignment (p < 0.05). Dynamic loading at 5° valgus resulted in increased forces on the MCLR at all flexion angles ranging between 16.2 N and 18.5 N (p < 0.05 from 0° to 30°; p < 0.01 from 45° to 60°). A 10° valgus malalignment further increased the forces on the MCLR at all flexion angles ranging between 29.4 N and 40.0 N (p < 0.01 from 0° to 45°, p < 0.05 at 60°). CONCLUSION: Valgus malalignment of the knee caused increased forces acting on the reconstructed MCL. In cases of chronic medial instabilities accompanied by a valgus deformity ≥ 5°, a realigning osteotomy should be considered concomitantly to the MCLR to protect the graft and potentially reduce graft failures. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Ligamentos Colaterales , Tendones Isquiotibiales , Humanos , Cadáver , Articulación de la Rodilla/cirugía , Fenómenos Biomecánicos , Ligamentos Colaterales/cirugía
16.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 881-888, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38469949

RESUMEN

PURPOSE: The purpose of this study was to retrospectively analyse the pattern of injury to the medial knee structures in anterior cruciate ligament (ACL) injured patients. It was hypothesised that anteromedial injuries would be more common than posteromedial lesions. METHODS: One hundred and twenty subjects aged 18-25 years with a primary ACL injury were included. Patients were excluded if the time between injury and magnetic resonance imaging (MRI) was more than 28 days or if a knee dislocation or fracture was present. The MRIs were analysed with particular emphasis on injuries to the medial knee structures, menisci and bone bruise patterns. Injuries to the ligaments and anteromedial retinaculum (AMR) were graded according to severity, ranging from periligamentous oedema (grade I), partial fibre disruption of less or more than 50% (grade IIa or IIb) to complete tears (grade III). RESULTS: AMR injury was seen in 87 subjects (72.5%) on the coronal plane and in 88 (73.3%) on the axial plane, with grade III lesions observed in 27 (22.5%) and 29 knees (24.2%). Injuries to the superficial medial collateral ligament (sMCL), deep MCL (dMCL) and posterior oblique ligament (POL) were detected in 60 patients (50%), 93 patients (77.5%) and 38 patients (31.6%). However, grade III injuries to the POL were observed in only seven knees (5.8%). Medial meniscus injuries were associated with lesions of the sMCL and AMR (p < 0.05), while lateral meniscus injuries were significantly more common in patients with dMCL rupture (p < 0.05). CONCLUSION: Data from this study suggest that injuries to the AMR are much more common than posteromedial lesions in subjects with ACL injuries. LEVEL OF EVIDENCE: Level IV.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla , Adulto , Humanos , Adolescente , Adulto Joven , Ligamento Cruzado Anterior , Estudios Retrospectivos , Traumatismos de la Rodilla/etiología , Traumatismos de la Rodilla/complicaciones , Articulación de la Rodilla/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/complicaciones , Lesiones del Ligamento Cruzado Anterior/epidemiología , Rotura/complicaciones
17.
Am J Sports Med ; 52(4): 928-935, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38343294

RESUMEN

BACKGROUND: Conflicting evidence has been reported regarding the biomechanical relevance of ramp lesions (RLs) on knee kinematics. Furthermore, the influence of the defect size of the RLs on anterior tibial translation (ATT) and external rotation (ER) is currently unknown. PURPOSE: To evaluate the influence of RL defect size on knee kinematics in anterior cruciate ligament (ACL) deficiency and after simulated ACL reconstruction (sACLR). STUDY DESIGN: Controlled laboratory study. METHODS: Eight cadaveric knee specimens were tested in a 6 degrees of freedom robotic test setup. Force-controlled clinical laxity tests were performed with 200 N of axial compression in 0°, 30°, 60°, and 90° of flexion: 5 N·m internal rotation (IR)/ER torque, 134 N ATT force, and an anteromedial drawer test consisting of 134 N ATT force under 5 N·m ER torque. After determining the native knee kinematics, the ACL was cut at the tibial insertion, followed by a transosseous refixation to simulate a surgical repair or reconstruction (simulated ACL reconstruction; sACLR). An RL was sequentially created with a length of 1, 2, and 3 cm. Each state of the RL was evaluated in the ACL-deficient state and after sACLR. RESULTS: In the ACL-deficient state, only an RL of 3 cm length resulted in a significant increase of ATT in 30° of flexion (mean difference 0.73 mm; 95% CI, 0.36-1.1 mm). After sACLR, an RL had no significant effect. When looking at ER, an RL significantly increased ER in full extension in the ACL-deficient state in 2 cm (mean difference 0.9°; 95% CI, 0.08°-1.74°) and 3 cm length (mean difference 1.9°; 95% CI, 0.57-3.25). Furthermore, a 3-cm RL significantly increased IR in 0° of flexion in the ACL-deficient state (mean difference 1.9°; 95% CI, 0.2°-3.6°). No effect of ramp lesions on rotation was found after sACLR. CONCLUSION: RLs result in a small increase in ATT, ER, and IR in ACL-deficient knees at early flexion angles, but not after sACLR. CLINICAL RELEVANCE: Small RLs did not change time-zero knee kinematics and may, therefore, be left untreated, especially when the ACL is reconstructed.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Procedimientos Quirúrgicos Robotizados , Humanos , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Cadáver , Inestabilidad de la Articulación/cirugía , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Fenómenos Biomecánicos
18.
J Bone Joint Surg Am ; 106(9): 809-816, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377221

RESUMEN

BACKGROUND: The current literature lacks recommendations regarding surgical approaches to best visualize and reduce Hoffa fractures. The aims of this study were to (1) define surgical corridors to the posterior portions of the lateral and medial femoral condyles and (2) compare the articular surface areas visible with different approaches. METHODS: Eight fresh-frozen human cadaveric knees (6 male and 2 female donors; mean age, 68.2 ± 10.2 years) underwent dissection simulating 6 surgical approaches to the distal femur. The visible articular surface areas for each approach were marked using an electrocautery device and subsequently analyzed using image-processing software. The labeled areas of each femoral condyle were statistically compared. RESULTS: At 30° of flexion, visualization of the posterior portions of the lateral and medial femoral condyles was not possible by lateral and medial parapatellar approaches, as only the anterior 29.4% ± 2.1% of the lateral femoral condyle and 25.6% ± 2.8% of the medial condyle were exposed. Visualization of the lateral femoral condyle was limited by the posterolateral ligamentous structures, hence a posterolateral approach only exposed its central (13.1% ± 1.3%) and posterior (12.4% ± 1.1%) portions. Posterolateral extension by an osteotomy of the lateral femoral epicondyle significantly improved the exposure to 53.4% ± 2.7% and, when combined with a Gerdy's tubercle osteotomy, to 70.9% ± 4.1% (p < 0.001). For the posteromedial approach, an arthrotomy between the anteromedial retinaculum and the superficial medial collateral ligament, and one between the posterior oblique ligament and the medial gastrocnemius tendon, allowed visualization of the central (13.5% ± 2.2%) and the posterior (14.6% ± 2.3%) portions of the medial femoral condyle, while a medial femoral epicondyle osteotomy significantly improved visualization to 66.1% ± 5.5% (p < 0.001). CONCLUSIONS: Visualization of the posterior portions of the femoral condyles is limited by the specific anatomy of each surgical corridor. Extension by osteotomy of the femoral epicondyles and Gerdy's tubercle significantly improved articular surface exposure of the femoral condyles. CLINICAL RELEVANCE: Knowledge of the surgical approach-specific visualization of the articular surface of the femoral condyles might be helpful to properly reduce small Hoffa fragments.


Asunto(s)
Cadáver , Fracturas del Fémur , Humanos , Femenino , Masculino , Anciano , Fracturas del Fémur/cirugía , Articulación de la Rodilla/cirugía , Persona de Mediana Edad , Fémur/cirugía , Fémur/anatomía & histología , Anciano de 80 o más Años , Disección/métodos
19.
Arch Orthop Trauma Surg ; 144(4): 1655-1665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38206448

RESUMEN

INTRODUCTION: The aim of the present study was to evaluate midterm outcomes 5-7 years after matrix-associated autologous chondrocyte implantation (MACI) in the patellofemoral joint. MATERIALS AND METHODS: Twenty-six patients who had undergone MACI using the Novocart® 3D scaffold were prospectively evaluated. Clinical outcomes were determined by measuring the 36-Item Short-Form Health Survey (SF-36) and International Knee Documentation Committee (IKDC) scores and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) values preoperatively and 3, 6, and 12 months, and a mean of 6 years postoperatively. At the final follow-up, the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score was evaluated. RESULTS: Twenty-two patients with 23 focal cartilage defects (19 patella and four trochlea) were available for the final follow-up. The mean defect size was 4.0 ± 1.9 cm2 (range 2.4-9.4 cm2). All clinical outcome scores improved significantly until 5-7 years after MACI (SF-36 score, 61.2 ± 19.6 to 83.2 ± 11.6; P = 0.001; IKDC score, 47.5 ± 20.6 to 74.7 ± 15.5; P < 0.001; and WOMAC, 29.8 ± 15.7 to 8.2 ± 10.3; P < 0.001). The mean MOCART score was 76.0 ± 11.0 at the final follow-up. Nineteen of the 22 patients (86.4%) were satisfied with the outcomes after 5-7 years and responded that they would undergo the procedure again. CONCLUSION: MACI in the patellofemoral joint demonstrated good midterm clinical results with a significant reduction in pain, improvement in function, and high patient satisfaction. These clinical findings are supported by radiological evidence from MOCART scores. LEVEL OF EVIDENCE: IV-case series.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Traumatismos de la Rodilla , Articulación Patelofemoral , Humanos , Articulación Patelofemoral/diagnóstico por imagen , Articulación Patelofemoral/cirugía , Condrocitos , Estudios de Seguimiento , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/cirugía , Traumatismos de la Rodilla/cirugía , Trasplante Autólogo/métodos , Enfermedades de los Cartílagos/cirugía , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética , Dolor
20.
Unfallchirurgie (Heidelb) ; 127(1): 18-26, 2024 Jan.
Artículo en Alemán | MEDLINE | ID: mdl-37848564

RESUMEN

Different medial structures are responsible for restraining valgus rotation, external rotation, and anteromedial rotation. When injured this can result in various degrees of isolated and combined instabilities. In contrast to earlier speculation, the posterior oblique ligament (POL) is no longer considered to be the main stabilizer of anteromedial rotatory instability (AMRI). Acute proximal medial ruptures are typically managed conservatively with very good clinical results. Conversely, acute distal ruptures usually require a surgical intervention. Chronic instabilities mostly occur in combination with instabilities of the anterior cruciate ligament (ACL). The clinical examination is a particularly important component in these cases to determine the indications for surgery for an additional medial reconstruction. In cases of severe medial and anteromedial instabilities, surgical treatment should be considered. Biomechanically, a combined medial and anteromedial reconstruction appears to be superior to other reconstruction methods; however, there is currently a lack of clinical studies to confirm this biomechanical advantage.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Humanos , Lesiones del Ligamento Cruzado Anterior/cirugía , Rango del Movimiento Articular , Inestabilidad de la Articulación/etiología , Fenómenos Biomecánicos , Articulación de la Rodilla/diagnóstico por imagen , Rotura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...