Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glia ; 70(9): 1777-1794, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35589612

RESUMEN

Norepinephrine exerts powerful influences on the metabolic, neuroprotective and immunoregulatory functions of astrocytes. Until recently, all effects of norepinephrine were believed to be mediated by receptors localized exclusively to the plasma membrane. However, recent studies in cardiomyocytes have identified adrenergic receptors localized to intracellular membranes, including Golgi and inner nuclear membranes, and have shown that norepinephrine can access these receptors via transporter-mediated uptake. We recently identified a high-capacity norepinephrine transporter, organic cation transporter 3 (OCT3), densely localized to outer nuclear membranes in astrocytes, suggesting that adrenergic signaling may also occur at the inner nuclear membrane in these cells. Here, we used immunofluorescence and western blot to show that ß1 -adrenergic receptors are localized to astrocyte inner nuclear membranes; that key adrenergic signaling partners are present in astrocyte nuclei; and that OCT3 and other catecholamine transporters are localized to astrocyte plasma and nuclear membranes. To test the functionality of nuclear membrane ß1 -adrenergic receptors, we monitored real-time protein kinase A (PKA) activity in astrocyte nuclei using a fluorescent biosensor. Treatment of astrocytes with norepinephrine induced rapid increases in PKA activity in the nuclear compartment. Pretreatment of astrocytes with inhibitors of catecholamine uptake blocked rapid norepinephrine-induced increases in nuclear PKA activity. These studies, the first to document functional adrenergic receptors at the nuclear membrane in any central nervous system cell, reveal a novel mechanism by which norepinephrine may directly influence nuclear processes. This mechanism may contribute to previously described neuroprotective, metabolic and immunoregulatory actions of norepinephrine.


Asunto(s)
Astrocitos , Norepinefrina , Adrenérgicos/farmacología , Astrocitos/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacología , Norepinefrina/metabolismo , Norepinefrina/farmacología , Membrana Nuclear/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1/metabolismo
2.
Neurobiol Learn Mem ; 190: 107610, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302040

RESUMEN

The hippocampus is crucial for associative fear learning when the anticipation of threat requires temporal or contextual binding of predictive stimuli as in trace and contextual fear conditioning. Compared with the dorsal hippocampus, far less is known about the contribution of the ventral hippocampus to fear learning. The ventral hippocampus, which is highly interconnected with defensive and emotional networks, has a prominent role in both innate and learned affective behaviors including anxiety, fear, and reward. Lesions or temporary inactivation of the ventral hippocampus impair both cued and contextual fear learning, but whether the ventral hippocampal role in learning is driven by affective processing, associative encoding, or both is not clear. Here, we used trace fear conditioning in mixed sex cohorts to assess the contribution of shock-encoding to the acquisition of cued and contextual fear memories. Trace conditioning requires subjects to associate an auditory conditional stimulus (CS) with a shock unconditional stimulus (UCS) that are separated in time by a 20-s trace interval. We first recorded neuronal activity in the ventral hippocampus during trace fear conditioning and found that ventral CA1 predominantly encoded the shock reinforcer. Potentiated firing to the CS was evident at testing, but no encoding of the trace interval was observed. We then tested the necessity of shock encoding for conditional fear acquisition by optogenetically silencing ventral hippocampal activity during the UCS on each trial of training. Contrary to our predictions, preventing hippocampal shock-evoked firing did not impair associative fear. Instead, it led to a more prolonged expression of CS freezing across test trials, an effect observed in males, but not females. Contextual fear learning was largely intact, although a subset of animals in each sex were differentially affected by shock-silencing. Taken together, the results show that shock encoding in the ventral hippocampus modulates the expression of learned fear in a sex-specific manner.


Asunto(s)
Miedo , Hipocampo , Animales , Condicionamiento Clásico/fisiología , Señales (Psicología) , Miedo/fisiología , Hipocampo/fisiología , Humanos , Aprendizaje , Masculino
3.
Neuropsychopharmacology ; 45(12): 1974-1985, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32303052

RESUMEN

Clinical reports suggest that females diagnosed with substance use disorder experience enhanced relapse vulnerability compared with males, particularly during stress. We previously demonstrated that a stressor (footshock) can potentiate cocaine seeking in male rats via glucocorticoid-dependent cannabinoid type-1 receptor (CB1R)-mediated actions in the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the influence of biological sex on stress-potentiated cocaine seeking. Despite comparable self-administration and extinction, females displayed a lower threshold for cocaine-primed reinstatement than males. Unlike males, footshock, tested across a range of intensities, failed to potentiate cocaine-primed reinstatement in females. However, restraint potentiated reinstatement in both sexes. While sex differences in stressor-induced plasma corticosterone (CORT) elevations and defensive behaviors were not observed, differences were evident in footshock-elicited ultrasonic vocalizations. CORT administration, at a dose which recapitulates stressor-induced plasma levels, reproduced stress-potentiated cocaine-primed reinstatement in both sexes. In females, CORT effects varied across the estrous cycle; CORT-potentiated reinstatement was only observed during diestrus and proestrus. As in males, CORT-potentiated cocaine seeking in females was localized to the PrL-PFC and both CORT- and restraint-potentiated cocaine seeking required PrL-PFC CB1R activation. In addition, ex vivo whole-cell electrophysiological recordings from female layer V PrL-PFC pyramidal neurons revealed CB1R-dependent CORT-induced suppression of inhibitory synaptic activity, as previously observed in males. These findings demonstrate that, while stress potentiates cocaine seeking via PrL-PFC CB1R in both sexes, sensitivity to cocaine priming injections is greater in females, CORT-potentiating effects vary with the estrous cycle, and whether reactivity to specific stressors may manifest as drug seeking depends on biological sex.


Asunto(s)
Cocaína , Animales , Comportamiento de Búsqueda de Drogas , Extinción Psicológica , Femenino , Masculino , Corteza Prefrontal , Ratas , Ratas Sprague-Dawley , Autoadministración
4.
Neuropharmacology ; 133: 145-154, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29353055

RESUMEN

A genetic polymorphism within the gene encoding the pituitary adenylate cyclase- activating polypeptide (PACAP) receptor type I (PAC1R) has recently been associated with hyper-reactivity to threat-related cues in women, but not men, with post-traumatic stress disorder (PTSD). PACAP is a highly conserved peptide, whose role in mediating adaptive physiological stress responses is well established. Far less is understood about the contribution of PACAP signaling in emotional learning and memory, particularly the encoding of fear to discrete cues. Moreover, a neurobiological substrate that may account for the observed link between PAC1R and PTSD in women, but not men, has yet to be identified. Sex differences in PACAP signaling during emotional learning could provide novel targets for the treatment of PTSD. Here we investigated the contribution of PAC1R signaling within the prefrontal cortex to the acquisition of cued fear in female and male rats. We used a variant of fear conditioning called trace fear conditioning, which requires sustained attention to fear cues and depends on working-memory like neuronal activity within the prefrontal cortex. We found that cued fear learning, but not spatial working memory, was impaired by administration of a PAC1R antagonist directly into the prelimbic area of the prefrontal cortex. This effect was specific to females. We also found that levels of mRNA for the PAC1R receptor in the prelimbic cortex were greater in females compared with males, and were highest during and immediately following the proestrus stage of the estrous cycle. Together, these results demonstrate a sex-specific role of PAC1R signaling in learning about threat-related cues.


Asunto(s)
Señales (Psicología) , Miedo/fisiología , Memoria a Corto Plazo/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Corteza Prefrontal/fisiología , Transducción de Señal/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Miedo/efectos de los fármacos , Femenino , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Long-Evans , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Caracteres Sexuales , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...