Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008339

RESUMEN

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Humanos , Inflamación/tratamiento farmacológico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
2.
Front Immunol ; 14: 1252827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841261

RESUMEN

Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.


Asunto(s)
Francisella tularensis , Infecciones por Bacterias Gramnegativas , Humanos , Macrófagos , Infecciones por Bacterias Gramnegativas/metabolismo , Transducción de Señal , Enzimas Desubicuitinizantes/metabolismo , Ubiquitina Tiolesterasa/metabolismo
3.
Eur J Med Chem ; 260: 115717, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598483

RESUMEN

Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.


Asunto(s)
Microsomas , Quinazolinas , Humanos , Animales , Ratones , Quinazolinas/farmacología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor
4.
Autophagy ; 19(8): 2372-2385, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37184247

RESUMEN

Macroautophagy/autophagy is a catabolic process by which cytosolic content is engulfed, degraded and recycled. It has been implicated as a critical pathway in advanced stages of cancer, as it maintains tumor cell homeostasis and continuous growth by nourishing hypoxic or nutrient-starved tumors. Autophagy also supports alternative cellular trafficking pathways, providing a mechanism of non-canonical secretion of inflammatory cytokines. This opens a significant therapeutic opportunity for using autophagy inhibitors in cancer and acute inflammatory responses. Here we developed a high throughput compound screen to identify inhibitors of protein-protein interaction (PPI) in autophagy, based on the protein-fragment complementation assay (PCA). We chose to target the ATG12-ATG3 PPI, as this interaction is indispensable for autophagosome formation, and the analyzed structure of the interaction interface predicts that it may be amenable to inhibition by small molecules. We screened 41,161 compounds yielding 17 compounds that effectively inhibit the ATG12-ATG3 interaction in the PCA platform, and which were subsequently filtered by their ability to inhibit autophagosome formation in viable cells. We describe a lead compound (#189) that inhibited GFP-fused MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) puncta formation in cells with IC50 value corresponding to 9.3 µM. This compound displayed a selective inhibitory effect on the growth of autophagy addicted tumor cells and inhibited secretion of IL1B/IL-1ß (interleukin 1 beta) by macrophage-like cells. Compound 189 has the potential to be developed into a therapeutic drug and its discovery documents the power of targeting PPIs for acquiring specific and selective compound inhibitors of autophagy.Abbreviations: ANOVA: analysis of variance; ATG: autophagy related; CQ: chloroquine; GFP: green fluorescent protein; GLuc: Gaussia Luciferase; HEK: human embryonic kidney; IL1B: interleukin 1 beta; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PCA: protein-fragment complementation assay; PDAC: pancreatic ductal adenocarcinoma; PMA: phorbol 12-myristate 13-acetate; PPI: protein-protein interaction. VCL: vinculin.


Asunto(s)
Autofagia , Neoplasias Pancreáticas , Humanos , Interleucina-1beta/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Fluorescentes Verdes/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteína 12 Relacionada con la Autofagia
5.
Front Cell Infect Microbiol ; 13: 1070271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026055

RESUMEN

Introduction: Ubiquitination is an important protein modification that regulates various essential cellular processes, including the functions of innate immune cells. Deubiquitinases are enzymes responsible for removing ubiquitin modification from substrates, and the regulation of deubiquitinases in macrophages during infection with Salmonella Typhimurium and Yersinia enterocolitica remains unknown. Methods: To identify deubiquitinases regulated in human macrophages during bacterial infection, an activity-based proteomics screen was conducted. The effects of pharmacological inhibition of the identified deubiquitinase, USP8, were examined, including its impact on bacterial survival within macrophages and its role in autophagy regulation during Salmonella infection. Results: Several deubiquiitnases were differentially regulated in infected macrophages. One of the deubiquitinases identified was USP8, which was downregulated upon Salmonella infection. Inhibition of USP8 was associated with a decrease in bacterial survival within macrophages, and it was found to play a distinct role in regulating autophagy during Salmonella infection. The inhibition of USP8 led to the downregulation of the p62 autophagy adaptor. Discussion: The findings of this study suggest a novel role of USP8 in regulating autophagy flux, which restricts intracellular bacteria, particularly during Salmonella infection.


Asunto(s)
Infecciones por Salmonella , Humanos , Salmonella typhimurium/metabolismo , Autofagia , Ubiquitinación , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
6.
Microorganisms ; 9(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808578

RESUMEN

Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.

7.
Infect Immun ; 86(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29158431

RESUMEN

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium, which can invade and survive within macrophages. Pathogenic salmonellae induce the secretion of specific cytokines from these phagocytic cells and interfere with the host secretory pathways. In this study, we describe the extracellular proteome of human macrophages infected with S Typhimurium, followed by analysis of canonical pathways of proteins isolated from the extracellular milieu. We demonstrate that some of the proteins secreted by macrophages upon S Typhimurium infection are released via exosomes. Moreover, we show that infected macrophages produce CD63+ and CD9+ subpopulations of exosomes at 2 h postinfection. Exosomes derived from infected macrophages trigger the Toll-like receptor 4-dependent release of tumor necrosis factor alpha (TNF-α) from naive macrophages and dendritic cells, but they also stimulate secretion of such cytokines as RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes. In summary, we show for the first time that proinflammatory exosomes are formed in the early phase of macrophage infection with S Typhimurium and that they can be used to transfer cargo to naive cells, thereby leading to their stimulation.


Asunto(s)
Exosomas/metabolismo , Factores Inmunológicos/análisis , Macrófagos/metabolismo , Macrófagos/microbiología , Proteoma/análisis , Infecciones por Salmonella/patología , Salmonella typhimurium/inmunología , Células Cultivadas , Humanos
8.
Arch Virol ; 162(7): 2091-2096, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28357511

RESUMEN

Zika virus is considered a major global threat to human kind. Here, we present a crystal structure of one of its essential enzymes, the methyltransferase, with the inhibitor sinefungin. This structure, together with previously solved structures with bound substrates, will provide the information needed for rational inhibitor design. Based on the structural data we suggest the modification of the adenine moiety of sinefungin to increase selectivity and to covalently link it to a GTP analogue, to increase the affinity of the synthesized compounds.


Asunto(s)
Adenosina/análogos & derivados , Inhibidores Enzimáticos/química , Metiltransferasas/antagonistas & inhibidores , Virus Zika/enzimología , Adenosina/química , Sitios de Unión , Modelos Moleculares , Unión Proteica
9.
Antiviral Res ; 137: 131-133, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27902932

RESUMEN

We describe the expression and purification of an active recombinant Zika virus RNA-dependent RNA polymerase (RdRp). Next, we present the development and optimization of an in vitro assay to measure its activity. We then applied the assay to selected triphosphate analogs and discovered that 2'-C-methylated nucleosides exhibit strong inhibitory activity. Surprisingly, also carbocyclic derivatives with the carbohydrate locked in a North-like conformation as well as a ribonucleotide with a South conformation exhibited strong activity. Our results suggest that the traditional 2'-C-methylated nucleosides pursued in the race for anti-HCV treatment can be superseded by brand new scaffolds in the case of the Zika virus.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Nucleósidos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Virus Zika/efectos de los fármacos , Adenosina Trifosfato/química , Descubrimiento de Drogas , Humanos , Conformación Molecular , Nucleósidos/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Virus Zika/enzimología
10.
Biochim Biophys Acta ; 1864(5): 562-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26854600

RESUMEN

Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY: We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Biosíntesis de Proteínas/genética , Yersiniosis/genética , Yersinia enterocolitica/genética , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Proteómica , Yersiniosis/microbiología , Yersinia enterocolitica/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...