Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 330: 138729, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37080469

RESUMEN

Bisphenol A (BPA) is a micro-pollutant found in various environmental matrices at concentrations as low as ng/L. Recent studies have shown that this compound can cause oxidative damage and neurotoxic effects in aquatic organisms. However, there is a lack of research investigating the effects of BPA at environmentally relevant concentrations. Therefore, this study aimed to assess the neurotoxic effects of acute BPA exposure (96 h) at environmentally relevant concentrations (220, 1180, and 1500 ng/L) in adult zebrafish (Danio rerio). The Novel Tank trial was used to evaluate fish swimming behavior, and our results indicate that exposure to 1500 ng/L of BPA reduced the total distance traveled and increased freezing time. Furthermore, the evaluation of biomarkers in the zebrafish brain revealed that BPA exposure led to the production of reactive oxygen species and increased acetylcholinesterase activity. Gene expression analysis also indicated the overexpression of mbp, α1-tubulin, and manf in the zebrafish brain. Based on our findings, we concluded that environmentally relevant concentrations of BPA can cause anxiety-like behavior and neurotoxic effects in adult zebrafish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo , Estrés Oxidativo , Encéfalo/metabolismo , Expresión Génica , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Environ Toxicol Pharmacol ; 94: 103925, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35835282

RESUMEN

This study assessed the effects of Bisphenol A in embryonic stages of zebrafish, applying an IBR multi-biomarker approach that included alterations in growth and oxidative status and relates it with the expression of Nrf1, Nrf2, Wnt3a, Wnt8a, COX-2, Qdpra, and DKK1 genes. For this purpose, we exposed zebrafish embryos to eight environmentally relevant concentrations of BPA (220, 380, 540, 700, 860, 1180, 1340, and 1500 ng L-1) until 96 h post-fertilization. Our results show that BPA induces several malformations in embryos (developmental delay, hypopigmentation, tail malformations, and on), leading to their death. The LC50, EC50 of malformations, and teratogenic index (TI) were 1234.60 ng L-1, 987.77 ng L-1, and 1.25, respectively; thus, this emerging contaminant is teratogenic. Regarding oxidative stress and gene expression, we demonstrated BPA altered oxidative status and the gene expression in embryos of Danio rerio.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Compuestos de Bencidrilo , Biomarcadores/metabolismo , Embrión no Mamífero , Desarrollo Embrionario , Fenoles , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
4.
Sci Total Environ ; 834: 155359, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460791

RESUMEN

Several studies have reported the presence of phenytoin (PHE) in wastewater treatment plant effluents, hospital effluents, surface water, and even drinking water. However, published studies on the toxic effects of PHE at environmentally relevant concentrations in aquatic organisms are scarce. The present study aimed to determine the effect of three environmentally relevant concentrations of PHE (25, 282, and 1500 ng L-1) on behavioral parameters using the novel tank test. Moreover, we also aimed to determine whether or not these concentrations of PHE may impair acetylcholinesterase (AChE) activity and oxidative status in the brain of Danio rerio adults. Behavioral responses suggested an anxiolytic effect in PHE-exposed organisms, mainly observed in organisms exposed to 1500 ng L-1, with a significant decrease in fish mobility and a significant increase in activity at the top of the tank. Besides the behavioral impairment, PHE-exposed fish also showed a significant increase in the levels of lipid peroxidation, hydroperoxides, and protein carbonyl content compared to the control group. Moreover, a significant increase in brain AChE levels was observed in fish exposed to 282 and 1500 ng L-1. The results obtained in the present study show that PHE triggers a harmful response in the brain of fish, which in turn generates fish have an anxiety-like behavior.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Acetilcolinesterasa/metabolismo , Animales , Biomarcadores/metabolismo , Estrés Oxidativo , Fenitoína/metabolismo , Fenitoína/toxicidad , Carbonilación Proteica , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
5.
Neurotoxicology ; 90: 121-129, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35304135

RESUMEN

Fluoxetine (FLX) exerts its therapeutic effect by inhibiting the presynaptic reuptake of the neurotransmitter serotonin. Nonetheless, at high concentrations of this drug, adverse effects occur in the brain of exposed organisms. Bearing this into account, the objective of this study was to evaluate the neurotoxic effects of the fluoxetine through the evaluation of behavior (Novel tank test), determination of oxidative stress, and determination of acetylcholinesterase (AChE) activity in adult zebrafish Danio rerio. For this purpose, Danio rerio adults were exposed to three environmentally relevant concentrations (5, 10, 16 ng L-1) of FLX for 96 h. Our results demonstrate fish presented a significant disruption in their behavior, as they remained long-lasting time frozen at the top of the tank. Since we observed a significant reduction of AChE activity in the brain of fish, we believe the above described anxiety-like state is the result of this enzyme impairment. Moreover, as FLX-exposed fish showed a significant increase in the levels of oxidative damage biomarkers, we suggest this AChE disruption is associated with the oxidative stress response fish exhibited. Based on our findings, we believe the environmentally relevant concentration of FLX alters the redox status of the brain, impairing this way the behavior of fish and making them more vulnerable to predation.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Acetilcolinesterasa/metabolismo , Animales , Fluoxetina/toxicidad , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
6.
Chemosphere ; 294: 133791, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35104548

RESUMEN

Several studies have indicated that hospital effluents can produce genotoxic and mutagenic effects, cytotoxicity, hematological and histological alterations, embryotoxicity, and oxidative stress in diverse water organisms, but research on the neurotoxic effects hospital wastewater materials can generate in fish is still scarce. To fill the above-described knowledge gap, this study aimed to determine whether the exposure of adult zebrafish (Danio rerio) to several proportions (0.1%, 2.5%, 3.5%) of a hospital effluent can disrupt behavior or impair redox status and acetylcholinesterase content in the brain. After 96 h of exposure to the effluent, we observed a decrease in total distance traveled and an increase in frozen time compared to the control group. Moreover, we also observed a significant increase in the levels of reactive oxygen species in the brains of the fish, especially in hydroperoxide and protein carbonyl content, relative to the control group. Our results also demonstrated that hospital effluents significantly inhibited the activity of the AChE enzyme in the brains of the fish. Our Pearson correlation demonstrated that the response to acetylcholinesterase at the lowest proportions (0.1% and 2.5%) is positively related to the oxidative stress response and the behavioral changes observed. The cohort of our studies demonstrated that the exposure of adult zebrafish to a hospital effluent induced oxidative stress and decreased acetylcholinesterase activity in the brain of these freshwater organisms, which can lead to alterations in their behavior.


Asunto(s)
Acetilcolinesterasa , Conducta Animal , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Acetilcolinesterasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Hospitales , Humanos , México , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Natación , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-34990834

RESUMEN

Phenytoin (PHE) is an antiepileptic drug that has been widely used in clinical practice for about 80 years. It is mainly used in the treatment of tonic-clonic and partial seizures. The widespread consumption of this drug around the world has led to PHE being introduced into water bodies through municipal, hospital, and industrial effluent discharges. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of low (25-400 ngL-1) and high (500-1500 ngL-1) environmentally relevant concentrations of PHE on the development and oxidative status of zebrafish (Danio rerio) embryos. The toxicity of PHE was evaluated from 12 to 96 h after fertilization in D. rerio at concentrations between 25 and 1500 ngL-1. In both the control group and the 0.05% DMSO system, no malformations were observed, all embryos developed normally after 96 h. The severity and frequency of malformations increased with increasing PHE concentration compared to embryos in the control group. Malformations observed included developmental delay, hypopigmentation, miscellaneous (more than one malformation in the same embryo), modified chorda structure, tail malformation, and yolk deformation. Concerning the biomarkers of oxidative stress, an increase in the degree of lipid peroxidation, protein carbonylation, and hydroperoxide content was observed (p < 0.05) concerning the control. In addition, a significant increase (p < 0.05) in antioxidant enzymes (SOD, CAT, and GPx) was observed at low exposure concentrations (25-400 ngL-1), with a decrease in enzyme activity at high concentrations (500-1500 ngL-1). Our IBR analysis demonstrated that oxidative damage biomarkers got more influence at 500ngL-1 of PHE. The results demonstrated that PHE may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenitoína/toxicidad , Pez Cebra/embriología , Animales , Antioxidantes/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Enzimas/metabolismo , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/toxicidad , Proteínas de Pez Cebra/metabolismo
8.
Sci Total Environ ; 807(Pt 3): 151048, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673069

RESUMEN

Fluoxetine (FLX) is a psychoactive drug that acts as an antidepressant. FLX is one of the world's best-selling prescription antidepressants. FLX is widely used for the treatment of various psychiatric disorders. For these reasons, this drug may eventually end up in the aquatic environment via municipal, industrial, and hospital discharges. Even though the occurrence of FLX in aquatic environments has been reported as ubiquitous, the toxic effects that this drug may induce, especially at environmentally relevant concentrations, on essential biological processes of aquatic organisms require more attention. In the light of this information, this work aimed to investigate the influence that fluoxetine oxidative stress-induced got over the embryonic development of Danio rerio. For this purpose, D. rerio embryos (4 h post fertilization) were exposed to environmentally relevant concentrations (5, 10, 15, 20, 25, 30, 35, and 40 ng L-1) of fluoxetine, until 96 h post fecundation. Along the exposure, survival, alterations to embryonic development, and teratogenic effects were evaluated using a stereomicroscope. Furthermore, oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation, hydroperoxide, and carbonyl content) were evaluated at 72 and 96 h post fecundation. LC50, EC50m, and teratogenic index were 30 ng L-1, 16 ng L-1, and 1.9, respectively. The main teratogenic effects induced by fluoxetine were pericardial edema, hatching retardation, spine alterations and craniofacial malformations. Concerning oxidative stress, our integrated biomarkers (IBR) analysis demonstrated that as the concentration increased, oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, fluoxetine induces an important oxidative stress response on the embryos of D. rerio. Collectively, our results allow us to concluded that FLX is a dangerous drug in the early life stages of D. rerio due to its high teratogenic potential and that FLX-oxidative stress induced may be involved in this toxic process.


Asunto(s)
Fluoxetina , Pez Cebra , Animales , Desarrollo Embrionario , Fluoxetina/toxicidad , Humanos , Peroxidación de Lípido , Estrés Oxidativo
9.
Environ Res ; 182: 108992, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31830696

RESUMEN

Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.


Asunto(s)
Carpas , Residuos Industriales , Teratógenos , Contaminantes Químicos del Agua , Animales , Larva , México , Oocitos/efectos de los fármacos , Teratógenos/toxicidad , Contaminantes Químicos del Agua/toxicidad
10.
Chemosphere ; 236: 124323, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31319313

RESUMEN

Amoxicillin (AMX) is a pharmaceutical widely employed in human and veterinary medicine worldwide. Its wide production and use has led to this pharmaceutical being released into the environment in concentrations that range from ng L-1 to µg L-1. Previous studies have demonstrated that this antibiotic generates toxic effects, amongst which alterations to embryonic development and oxidative stress in aquatic organisms, is noteworthy. Nonetheless, it is necessary to characterize the risks that this pharmaceutical represents for species of economic interest such as Cyprinus carpio, in a more precise manner. The aim of this work was to demonstrate if AMX, at environmentally-relevant concentrations, is capable of inducing genotoxic/cytotoxic alterations in C. carpio. In order to evaluate genotoxicity, the comet assay and micronucleus test were used; in order to determine cytotoxic effects, caspase-3 activity and the TUNEL assay were carried out. The results showed that the effects of the biomarkers had their maximum at 72 h; considering the DNA damage in the comet assay, 0.039 µg L-1 resulted in a 29% increase compared to control, and 1.67 µg L-1 caused a 40% increase; micronucleus frequency increased by 205% in C1 and by 311% in C2 when compared to control; compared to control, caspase-3 activity increased 262% in C1 and 787% in C2; for the TUNEL assay, DNA fragmentation increased by 86% in C1 and 120% in C2 compared to control. The results showed that environmentally-relevant concentrations, AMX was capable of generating DNA damage and cytotoxic effects in blood cells of the common carp.


Asunto(s)
Amoxicilina/uso terapéutico , Antibacterianos/uso terapéutico , Contaminación Ambiental/análisis , Contaminantes Químicos del Agua/química , Amoxicilina/farmacología , Animales , Antibacterianos/farmacología , Carpas
11.
Sci Total Environ ; 692: 411-421, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31351285

RESUMEN

Sucralose (SUC) is an organochlorine that is used as a common sweetener in different dietary products around the world. Its extended use and production have led to this product is released into the environment in concentrations ranging from ng L-1 to µg L-1 in surface waters, groundwaters, wastewater treatment plants and ocean waters. A previous study carried out by our research team demonstrated that SUC is capable of inducing oxidative stress in Cyprinus carpio at environmentally-relevant concentrations. The aim of this study was to evaluate if SUC was capable of inducing alterations to DNA, apoptosis, and oxidative damage in the blood cells of C. carpio. Carps were exposed to two environmentally-relevant concentrations (0.05 and 155 µg L-1) of SUC, and the following biomarkers were determined: comet assay, micronucleus test (MN), caspase-3 activity, TUNEL assay, hydroperoxide content, lipid peroxidation level, protein carbonyl content and superoxide dismutase and catalase activities. Results obtained showed that SUC is capable of inducing DNA damage. A maximum increase of 35% and 23% were observed for c1 and c2, respectively in the comet assay; increases of 586% and 507.7% for c1 and c2, respectively, were found at 72 h through the MN test. The activity of caspase-3 showed a greater response for c1 and c2 at 96 h, with 271% and 493.5%, respectively. TUNEL assay also showed the highest response at 96 h, with 51.8 for c1 and 72.9 for c2; c1 y c2 were able to induce oxidative stress with the highest expression at 72 h. A correlation between DNA damage biomarkers, apoptosis and plasma levels of SUC in both concentrations were observed. With the data obtained, we can conclude that SUC, at environmentally-relevant concentrations, was capable of generating DNA alterations, apoptosis and oxidative stress in blood cells in common carp.


Asunto(s)
Apoptosis/efectos de los fármacos , Carpas/metabolismo , Daño del ADN , Eritrocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sacarosa/análogos & derivados , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Sacarosa/toxicidad , Edulcorantes/toxicidad
12.
Sci Total Environ ; 660: 751-764, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743961

RESUMEN

Hospital functioning generates a great quantity of contaminants, among which organic materials, heavy metals, and diverse pharmaceuticals are noteworthy that can affect organisms if they are not properly removed from the effluents. The hospital effluent evaluated in the present study came from IMSS (Instituto Mexicano del Seguro Social) Clinic 221 in downtown Toluca, State of Mexico, a secondary care facility. The contaminants identified in hospitals have been associated with deleterious effects on aquatic organisms; however, it is necessary to continue with more studies in order to be able to regulate the production of said contaminants which are generally dumped into the city sewage system. The present study had the purpose of evaluating the alterations to embryonic development and teratogenic effects on oocytes Cyprinus carpio after exposure to different proportions of hospital effluent. For said purpose, the physicochemical properties of the effluent were determined. Concentrations of the main microcontaminants were also determined. An embryolethality study out and the determination of the main alterations to embryonic development and teratogenic effects produced, due to exposure of C. carpio at different proportions of the effluent, were carried out. The results showed that the physicochemical properties were within the values permitted by Mexican regulation; however, the presence of contaminants such as NaClO, metals, anti-biotics, anti-diabetics, non-steroidal anti-inflammatory drugs, hormones and beta-blockers, was detected. Lethal concentration 50 was 5.65% and the effective concentration for malformations was 3.85%, with a teratogenic index of 1.46. The main teratogenic alterations were yolk deformation, scoliosis, modified chorda structure, tail malformation, fin deformity and mouth hyperplasia. A high rate of hatching delay was observed. The results suggest that the hospital effluent under study is capable of inducing embryotoxicity and teratogenicity in oocytes of C. carpio.


Asunto(s)
Carpas/embriología , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Residuos Sanitarios/estadística & datos numéricos , Contaminantes Químicos del Agua/toxicidad , Animales , Antiinflamatorios no Esteroideos/toxicidad , Hospitales , Metales/toxicidad , México , Teratogénesis , Teratógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...