Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cancer ; 15(13): 4047-4058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947399

RESUMEN

Background: Tamoxifen is commonly used in the treatment of hormonal-positive breast cancer. However, 30%-40% of tumors treated with tamoxifen develop resistance; therefore, an important step to overcome this resistance is to understand the underlying molecular and metabolic mechanisms. In the present work, we used metabolic profiling to determine potential biomarkers of tamoxifen resistance, and gene expression levels of enzymes important to these metabolites and then correlated the expression to the survival of patients receiving tamoxifen. Methods: Tamoxifen-resistant cell lines previously developed and characterized in our laboratory were metabolically profiled with nuclear magnetic resonance spectroscopy (NMR) using cryogenic probe, and the findings were correlated with the expression of genes that encode the key enzymes of the significant metabolites. Moreover, the effect of significantly altered genes on the overall survival of patients was assessed using the Kaplan-Meier plotter web tool. Results: We observed a significant increase in the levels of glutamine, taurine, glutathione, and xanthine, and a significant decrease in the branched-chain amino acids, valine, and isoleucine, as well as glutamate and cysteine in the tamoxifen-resistant cells compared to tamoxifen sensitive cells. Moreover, xanthine dehydrogenase and glutathione synthase gene expression were downregulated, whereas glucose-6-phosphate dehydrogenase was upregulated compared to control. Additionally, increased expression of xanthine dehydrogenase was associated with a better outcome for breast cancer patients. Conclusion: Overall, this study sheds light on metabolic pathways that are dysregulated in tamoxifen-resistant cell lines and the potential role of each of these pathways in the development of resistance.

2.
Sci Rep ; 14(1): 14806, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926483

RESUMEN

Multiple sclerosis (MS) is a chronic and progressive neurological disorder, characterized by neuroinflammation and demyelination within the central nervous system (CNS). The etiology and the pathogenesis of MS are still unknown. Till now, no satisfactory treatments, diagnostic and prognostic biomarkers are available for MS. Therefore, we aimed to investigate metabolic alterations in patients with MS compared to controls and across MS subtypes. Metabolic profiles of serum samples from patients with MS (n = 90) and healthy control (n = 30) were determined by Nuclear Magnetic Resonance (1H-NMR) Spectroscopy using cryogenic probe. This approach was also utilized to identify significant differences between the metabolite profiles of the MS groups (primary progressive, secondary progressive, and relapsing-remitting) and the healthy controls. Concentrations of nine serum metabolites (adenosine triphosphate (ATP), tryptophan, formate, succinate, glutathione, inosine, histidine, pantothenate, and nicotinamide adenine dinucleotide (NAD)) were significantly higher in patients with MS compared to control. SPMS serum exhibited increased pantothenate and tryptophan than in PPMS. In addition, lysine, myo-inositol, and glutamate exhibited the highest discriminatory power (0.93, 95% CI 0.869-0.981; 0.92, 95% CI 0.859-0.969; 0.91, 95% CI 0.843-0.968 respectively) between healthy control and MS. Using NMR- based metabolomics, we identified a set of metabolites capable of classifying MS patients and controls. These findings confirmed untargeted metabolomics as a useful approach for the discovery of possible novel biomarkers that could aid in the diagnosis of the disease.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Espectroscopía de Resonancia Magnética , Metabolómica , Esclerosis Múltiple , Humanos , Biomarcadores/sangre , Masculino , Femenino , Metabolómica/métodos , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Estudios de Casos y Controles
3.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829450

RESUMEN

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Asunto(s)
Antineoplásicos , Técnicas de Cultivo de Célula , Esferoides Celulares , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Esferoides Celulares/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Doxorrubicina/farmacología , Paclitaxel/farmacología , Cisplatino/farmacología , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Células MCF-7 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
4.
J Ocul Pharmacol Ther ; 40(1): 78-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38252789

RESUMEN

Introduction: The hydrogen-bonded networks play a significant role in influencing several physicochemical properties of ofloxacin in artificial tears (ATs), including density, pH, viscosity, and self-diffusion coefficients. The activities of the ofloxacin antibiotic with Ats mixtures are not solely determined by their concentration but are also influenced by the strength of the hydrogen bonding network which highlight the importance of considering factors such as excessive tear production and dry eye conditions when formulating appropriate dosages of ofloxacin antibiotics for eye drops. Objectives: Investigating the physicochemical properties of ofloxacin-ATs mixtures, which serve as a model for understanding the impact of hydrogen bonding on the antimicrobial activity of ofloxacin antibiotic eye drops. Determine the antimicrobial activities of the ofloxacin-Ats mixture with different concentration of ofloxacin. Methods: The ofloxacin-ATs mixtures were analyzed using 1H-NMR, Raman, and UV-Vis spectroscopies, with variation of ofloxacin concentration to study its dissociation kinetics in ATs, mimicking its behavior in human eye tears. The investigation includes comprehensive analysis of 1H-NMR spectral data, self-diffusion coefficients, Raman spectroscopy, UV-Vis spectroscopy, liquid viscosity, and acidity, providing a comprehensive assessment of the physicochemical properties. Results: Analysis of NMR chemical shifts, linewidths, and self-diffusion coefficient curves reveals distinct patterns, with peaks or minima observed around 0.6 ofloxacin mole fraction dissociated in ATs, indicating a strong correlation with the hydrogen bonding network. Additionally, the pH data exhibits a similar trend to viscosity, suggesting an influence of the hydrogen bonding network on protonic ion concentrations. Antibacterial activity of the ofloxacin-ATs mixtures is evaluated through growth rate analysis against Salmonella typhimurium, considering varying concentrations with mole fractions of 0.1, 0.4, 0.6, 0.8, and 0.9. Conclusions: The antibiotic-ATs mixture with a mole fraction of 0.6 ofloxacin exhibited lower activity compared to mixtures with mole fractions of 0.1 and 0.4, despite its lower concentration. The activities of the mixtures are not solely dependent on concentration but are also influenced by the strength of the hydrogen bonding network. These findings emphasize the importance of considering tear over-secretion and dry eye problems when designing appropriate doses of ofloxacin antibiotics for eye drop formulations.


Asunto(s)
Antibacterianos , Síndromes de Ojo Seco , Humanos , Antibacterianos/farmacología , Ofloxacino/farmacología , Ofloxacino/análisis , Gotas Lubricantes para Ojos , Espectroscopía de Protones por Resonancia Magnética , Lágrimas/química
5.
Sci Rep ; 13(1): 22405, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104224

RESUMEN

The coupling behavior of the wide field surface plasmon microscopy (WF-SPRM) with single-, two-, and multiple-gold nanoparticles (AuNPs) with different AuNPs sizes is investigated using theoretical, simulation, and experimental approaches. The signal intensity of a single AuNP increases from 208 a.u. to 583 a.u. as particle size increases from 40 to 80 nm, which evidences the signal-building mechanism of Rayleigh scattering theory. A discrete particle model of SPR is used to understand the interaction between an Au-layer and a single AuNP. The calculated intensity profile of the single AuNP from the discrete particle model is accepted with the experimental data. In addition, the superposition between 2-AuNPs surface plasmon waves is studied using the finite element method as well as experimental data from WF-SPRM. The surface plasmon waves around the two particles generate an interference pattern. Finally, it is demonstrated that plasmonic multiple particles scattering can be represented by an effective media, which is described by Maxwell-Garnet equations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...