Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 12(4)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326109

RESUMEN

Improvement in pancreatic cancer treatment represents an urgent medical goal that has been hampered by the lack of predictive biomarkers. Circulating Tumor Cells (CTCs) may be able to overcome this issue by allowing the monitoring of therapeutic response and tumor aggressiveness through ex vivo expansion. The successful expansion of CTCs is challenging, due to their low numbers in blood and the high abundance of blood cells. Here, we explored the utility of pancreatic CTC cultures as a preclinical model for treatment response. CTCs were isolated from ten patients with locally advanced pancreatic cancer using the Labyrinth, a biomarker independent, size based, inertial microfluidic separation device. Three patient-derived CTC samples were successfully expanded in adherent and spheroid cultures. Molecular and functional characterization was performed on the expanded CTC lines. CTC lines exhibited KRAS mutations, consistent with pancreatic cancers. Additionally, we evaluated take rate and metastatic potential in vivo and examined the utility of CTC lines for cytotoxicity assays. Patient derived expanded CTCs successfully generated patient derived xenograft (PDX) models with a 100% take rate. Our results demonstrate that CTC cultures are possible and provide a valuable resource for translational pancreatic cancer research, while also providing meaningful insight into the development of distant metastasis, as well as treatment resistance.

2.
J Nutr ; 149(7): 1170-1179, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31051496

RESUMEN

BACKGROUND: The intestinal microbiome is an important determinant of inflammatory balance in the colon that may affect response to dietary agents. OBJECTIVE: This is a secondary analysis of a clinical trial, the Fish Oil Study, to determine whether interindividual differences in colonic bacteria are associated with variability in the reduction of colonic prostaglandin E2 (PGE2) concentrations after personalized supplementation with ω-3 (n-3) fatty acids. METHODS: Forty-seven healthy adults (17 men, 30 women, ages 26-75 y) provided biopsy samples of colonic mucosa and luminal stool brushings before and after personalized ω-3 fatty acid supplementation that was based on blood fatty acid responses. Samples were analyzed using 16S ribosomal RNA sequencing. The data analyses focused on changes in bacterial community diversity. Linear regression was used to evaluate factors that predict a reduction in colonic PGE2. RESULTS: At baseline, increased bacterial diversity, as measured by the Shannon and Inverse Simpson indexes in both biopsy and luminal brushing samples, was positively correlated with dietary fiber intakes and negatively correlated with fat intakes. Dietary supplementation with ω-3 fatty acids increased the Yue and Clayton community dis-similarity index between the microbiome in luminal brushings and colon biopsy samples post-supplementation (P = 0.015). In addition, there was a small group of individuals with relatively high Prevotella abundance who were resistant to the anti-inflammatory effects of ω-3 fatty acid supplementation. In linear regression analyses, increases in diversity of the bacteria in the luminal brushing samples, but not in the biopsy samples, were significant predictors of lower colonic PGE2 concentrations post-supplementation in models that included baseline PGE2, baseline body mass index, and changes in colonic eicosapentaenoic acid-to-arachidonic acid ratios. The changes in bacterial diversity contributed to 6-8% of the interindividual variance in change in colonic PGE2 (P = 0.001). CONCLUSIONS: Dietary supplementation with ω-3 fatty acids had little effect on intestinal bacteria in healthy humans; however, an increase in diversity in the luminal brushings significantly predicted reductions in colonic PGE2. This trial was registered at www.clinicaltrials.gov as NCT01860352.


Asunto(s)
Bacterias/clasificación , Colon/microbiología , Suplementos Dietéticos , Dinoprostona/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Adulto , Anciano , Colon/metabolismo , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Persona de Mediana Edad
3.
Cancer Prev Res (Phila) ; 10(12): 729-737, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29133307

RESUMEN

This clinical trial developed a personalized dosing model for reducing prostaglandin E2 (PGE2) in colonic mucosa using ω-3 fatty acid supplementation. The model utilized serum eicosapentaenoic acid (EPA, ω-3):arachidonic acid (AA, ω-6) ratios as biomarkers of colonic mucosal PGE2 concentration. Normal human volunteers were given low and high ω-3 fatty acid test doses for 2 weeks. This established a slope and intercept of the line for dose versus serum EPA:AA ratio in each individual. The slope and intercept was utilized to calculate a personalized target dose that was given for 12 weeks. This target dose was calculated on the basis of a model, initially derived from lean rodents, showing a log-linear relationship between serum EPA:AA ratios and colonic mucosal PGE2 reduction. Bayesian methods allowed addition of human data to the rodent model as the trial progressed. The dosing model aimed to achieve a serum EPA:AA ratio that is associated with a 50% reduction in colonic PGE2 Mean colonic mucosal PGE2 concentrations were 6.55 ng/mg protein (SD, 5.78) before any supplementation and 3.59 ng/mg protein (SD, 3.29) after 12 weeks of target dosing. In secondary analyses, the decreases in PGE2 were significantly attenuated in overweight and obese participants. This occurred despite a higher target dose for the obese versus normal weight participants, as generated by the pharmacodynamic predictive model. Large decreases also were observed in 12-hydroxyicosatetraenoic acids, and PGE3 increased substantially. Future biomarker-driven dosing models for cancer prevention therefore should consider energy balance as well as overall eicosanoid homeostasis in normal tissue. Cancer Prev Res; 10(12); 729-37. ©2017 AACR.


Asunto(s)
Antiinflamatorios/administración & dosificación , Dinoprostona/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Mucosa Intestinal/metabolismo , Obesidad/metabolismo , Adulto , Anciano , Antiinflamatorios/farmacología , Ácido Araquidónico/sangre , Teorema de Bayes , Biomarcadores/metabolismo , Índice de Masa Corporal , Peso Corporal , Proliferación Celular , Ácido Eicosapentaenoico/sangre , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/metabolismo , Femenino , Aceites de Pescado , Voluntarios Sanos , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos
4.
Oncotarget ; 8(52): 89848-89866, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163793

RESUMEN

Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...