Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260673

RESUMEN

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain SNARE complex binding proteins which confer both inhibitory and stimulatory functions. Using systematic mutagenesis and combining reconstituted in vitro membrane fusion assays with electrophysiology in neurons, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which can lead to lipid binding. In contrast to mutants which maintain the hydrophobic character and the stimulatory function of Cpx, non-conservative exchanges largely perturbed spontaneous and evoked exocytosis. Mutants in the downstream region (amino acid 11-18) show differential effects. Cpx-A12W increased spontaneous release without affecting evoked release whereas replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release and surprisingly reduced the size of the readily releasable pool, a novel Cpx function, unanticipated from previous studies. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release. Significance Statement: We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We show using a combination of biochemical, imaging and electrophysiological techniques that the binding of the proximal region of complexin (amino acids 1-10) to lipids is crucial for spontaneous synaptic vesicular release. Furthermore, we identify a single amino acid at position D15 which is structurally important since it not only is involved in spontaneous release but, when mutated, also decreases drastically the readily releasable pool, a function that was never attributed to complexin.

2.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808655

RESUMEN

Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.

3.
J Neurosci ; 43(42): 7056-7068, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37657933

RESUMEN

The central nucleus of the amygdala (CeA) is implicated in alcohol use disorder (AUD) and AUD-associated plasticity. The CeA is a primarily GABAergic nucleus that is subdivided into lateral and medial compartments with genetically diverse subpopulations. GABAA receptors are heteromeric pentamers with subunits conferring distinct physiological characteristics. GABAA receptor signaling in the CeA has been implicated in ethanol-associated plasticity; however, population-specific changes in inhibitory signaling and subunit expression remain unclear. Here, we combined electrophysiology with single-cell gene expression analysis of population markers and GABAA receptor subunits to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure. We found that chronic ethanol exposure and withdrawal produced global changes in GABAA receptor subunit expression at the transcript and protein levels, increased excitability in female CeA neurons, and increased inhibitory synaptic transmission in male CeA neurons. When we examined CeA neurons at the single-cell level we found heterogenous populations, as previously reported. We observed ethanol-induced increases in excitability only in somatostatin neurons in the CeA of females, decreases in excitability only in the protein kinase C delta (PKCd) population in males, and ethanol-induced increases in inhibitory transmission in male PKCd and calbindin 2-expressing CeA neurons. There were no population-specific differences in GABAA receptor (Gabr) subunits in males but reduced GabrA5 expression in female somatostatin neurons. Collectively, these findings suggest that defined CeA populations display differential ethanol sensitivity in males and females, which may play a role in sex differences in vulnerability to AUD or expression of AUD pathology.SIGNIFICANCE STATEMENT The CeA is involved in the effects of ethanol in the brain; however, the population-specific changes in CeA activity remain unclear. We used recordings of CeA neuronal activity and single-cell gene expression to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure and found sex- and population-specific effects of chronic ethanol exposure and withdrawal. Specifically, female CeA neurons displayed increased excitability in the somatostatin CeA population, whereas male CeA neurons displayed increased inhibitory control in both PKCd and calbindin populations and decreased excitability in the PKCd population. These findings identify CeA populations that display differential sensitivity to ethanol exposure, which may contribute to sex differences in vulnerability to alcohol use disorder.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Ratas , Femenino , Masculino , Animales , Etanol/farmacología , Núcleo Amigdalino Central/metabolismo , Alcoholismo/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Somatostatina/metabolismo
4.
eNeuro ; 10(7)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37414553

RESUMEN

In 2021, 131 million adult Americans reported drinking alcohol in the last month, despite the well-known consequences of alcohol consumption. While alcohol use disorders (AUDs) are associated with both mood and chronic pain disorders, the relationship between alcohol drinking and affective and nociceptive behaviors remains unclear. Corticotropin releasing factor receptor-1 (CRF1) has been implicated in alcohol drinking, affective states, and pain sensitivity, often in a sex-dependent manner. In order to probe the effects of alcohol drinking on activity of CRF1+ cells and to also test the hypothesis that alcohol drinking is associated with both basal and subsequent affective and nociceptive readouts, we put male and female CRF1:cre:tdTomato rats through a battery of behavioral tests before and after intermittent access to alcohol. Following baseline testing, rats began alcohol (or water) drinking. Females consumed more alcohol in the first week, but there was no effect of sex on overall alcohol intake. Following three to four weeks of drinking, behavioral tests were repeated. Alcohol drinking decreased mechanical sensitivity, but no other effects of alcohol drinking were observed between experimental groups. Individual alcohol intake correlated with affective behavior in both sexes but only correlated with thermal sensitivity in males. There were no main effects of alcohol drinking or sex on CRF1+ neuronal activity in the medial prefrontal cortex (PFC) but final session alcohol intake correlated with activity in CRF1+ neurons in the infralimbic (IL) subregion. Together, our results suggest complex interplay between affective state, alcohol drinking, and the role of prefrontal CRF1+ neurons in mediating these behaviors.


Asunto(s)
Alcoholismo , Receptores de Hormona Liberadora de Corticotropina , Ratas , Masculino , Femenino , Animales , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Ratas Transgénicas , Consumo de Bebidas Alcohólicas , Corteza Prefrontal/fisiología , Etanol/farmacología , Proteína Fluorescente Roja
5.
Addict Neurosci ; 62023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292173

RESUMEN

The use of Electronic Nicotine Delivery Systems (ENDS) is increasing in prevalence and popularity. ENDS are a rapidly evolving technology as devices and e-liquid formulations adapt to policy restrictions and market demand To identify the impacts of nicotine formulation and concentration, we exposed female and male C57BL/6J mice to passive electronic vaporization of different nicotine formulations (freebase or salt) and concentrations (1% or 3%) and measured serum nicotine metabolite levels, brain activity by cFos expression, and anxiety-like and motivated behavior using the novelty suppressed feeding test. We found that the 3% freebase nicotine vapor group displayed significantly higher serum nicotine levels than either 1% or 3% nicotine salt formulations, and female mice displayed higher serum nicotine and cotinine levels compared to males. Central amygdala (CeA) activity was significantly elevated in male mice following nicotine vapor exposure, but the increase was not significantly different between nicotine vapor groups. CeA activity in female mice was unaffected. In contrast increased activity in the ventral tegmental area (VTA) was only observed in female mice exposed to 3% nicotine freebase and specifically in the dopaminergic population. Anxiety-like behavior in female mice was relatively unaffected by nicotine vapor exposure, however male mice displayed increased anxiety-like behavior and reduced motivation to feed after vapor exposure, specifically in the 3% freebase group. These results identify important sex differences in the impact of nicotine formulation and concentration on nicotine metabolism, brain region-specific activity and anxiety-like behavior, which may have significant relevance for different consequences of vaping in men and women.

6.
J Neurosci ; 43(17): 3081-3093, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37001989

RESUMEN

Nicotine engages dopamine neurons in the ventral tegmental area (VTA) to encode reward and drive the development of nicotine addiction, however how nicotine alters a stress associated VTA population remains unclear. Here, we used male and female CRF1-GFP mice and nicotine vapor exposure to examine the effects of nicotine in VTA corticotropin-releasing factor receptor 1 (CRF1) neurons. We use immunohistochemistry and electrophysiology to examine neuronal activity, excitability, and inhibitory signaling. We found that VTA CRF1 neurons are mainly dopaminergic and project to the nucleus accumbens (NAc; VTA-NAcCRF1 neurons). VTA-NAcCRF1 neurons show greater phasic inhibition in naive females and greater focal nicotine-induced increases in firing in naive males. Following acute nicotine vapor exposure, phasic inhibition was not altered, but focal nicotine-induced tonic inhibition was enhanced in females and diminished in males. Acute nicotine vapor exposure did not affect firing in VTA-NAcCRF1 neurons, but females showed lower baseline firing and higher focal nicotine-induced firing. Activity (cFos) was increased in the CRF1 dopaminergic VTA population in both sexes, but with greater increases in females. Following chronic nicotine vapor exposure, both sexes displayed reduced basal phasic inhibition and the sex difference in tonic inhibition following acute vapor exposure was no longer observed. Additionally, activity of the CRF1 dopaminergic VTA population was no longer elevated in either sex. These findings reveal sex-dependent and exposure-dependent changes in mesolimbic VTA-NAc CRF1 neuronal activity, inhibitory signaling, and nicotine sensitivity following nicotine vapor exposure. These changes potentially contribute to nicotine-dependent behaviors and the intersection between stress, anxiety, and addiction.SIGNIFICANCE STATEMENT Nicotine is known to engage reward systems in the brain historically centering the neurotransmitter dopamine however, how nicotine impacts other neurons in the reward pathway is less clear. The current study investigates the impact of acute and chronic electronic nicotine vapor exposure in a genetically-defined cell population containing the stress receptor corticotropin-releasing factor 1 (CRF1) that is located in the reward circuitry. This study employs functional measures of neuronal activity and identifies important sex differences in nicotine's effects across time and exposure.


Asunto(s)
Nicotina , Área Tegmental Ventral , Ratones , Femenino , Masculino , Animales , Área Tegmental Ventral/fisiología , Nicotina/farmacología , Caracteres Sexuales , Núcleo Accumbens , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo
7.
Addict Neurosci ; 32022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36059430

RESUMEN

The central nucleus of the amygdala (CeA) is a critical brain region in the integration of emotional behaviors and is one of the major output areas of the amygdaloid complex. The CeA is composed of GABAergic interneurons and projection neurons which co-express a range of peptides including neuropeptide Y (NPY). Importantly, GABA and NPY signaling, via the NPY Y1 receptor (Y1R), in the CeA modulate binge-like ethanol intake in rodents and these systems undergo neuroplastic alterations following a history of ethanol consumption. Here we assessed the roles of GABAergic and Y1R+ circuits arising from the CeA and innervating the lateral habenula (LHb), a brain region that modulates the aversive properties of ethanol, in modulating binge-like ethanol intake in mice using "drinking in the dark" (DID) procedures. Using an anterograde cre-inducible reporter virus we established the CeA → LHb circuit in male and female vgat-ires-cre and NPY1r-cre mice. Next, we found that chemogenetic silencing of both the GABAergic or Y1R+ CeA → LHb circuit significantly blunted binge-like intake of a 20% ethanol solution but this same procedure failed to alter the consumption of a 3% sucrose solution. Finally, one, 4-day cycle of DID failed to alter basal or effects of ethanol or NPY on inhibitory transmission in Y1R+ CeA → LHb neurons. The present results suggest that blunting GABAergic tone in LHb-projecting CeA neurons may represent a new approach to preventing the development of AUDs. Drugs that target NPY Y1Rs are potential attractive targets.

8.
Elife ; 112022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389341

RESUMEN

Corticotropin-releasing factor type-1 (CRF1) receptors are critical to stress responses because they allow neurons to respond to CRF released in response to stress. Our understanding of the role of CRF1-expressing neurons in CRF-mediated behaviors has been largely limited to mouse experiments due to the lack of genetic tools available to selectively visualize and manipulate CRF1+ cells in rats. Here, we describe the generation and validation of a transgenic CRF1-Cre-tdTomato rat. We report that Crhr1 and Cre mRNA expression are highly colocalized in both the central amygdala (CeA), composed of mostly GABAergic neurons, and in the basolateral amygdala (BLA), composed of mostly glutamatergic neurons. In the CeA, membrane properties, inhibitory synaptic transmission, and responses to CRF bath application in tdTomato+ neurons are similar to those previously reported in GFP+ cells in CRFR1-GFP mice. We show that stimulatory DREADD receptors can be targeted to CeA CRF1+ cells via virally delivered Cre-dependent transgenes, that transfected Cre/tdTomato+ cells are activated by clozapine-n-oxide in vitro and in vivo, and that activation of these cells in vivo increases anxiety-like and nocifensive behaviors. Outside the amygdala, we show that Cre-tdTomato is expressed in several brain areas across the brain, and that the expression pattern of Cre-tdTomato cells is similar to the known expression pattern of CRF1 cells. Given the accuracy of expression in the CRF1-Cre rat, modern genetic techniques used to investigate the anatomy, physiology, and behavioral function of CRF1+ neurons can now be performed in assays that require the use of rats as the model organism.


Asunto(s)
Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Animales , Ansiedad , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Integrasas , Ratones , Nocicepción , Ratas , Ratas Transgénicas , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo
9.
Mol Psychiatry ; 27(5): 2502-2513, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35264727

RESUMEN

Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Síndrome de Abstinencia a Sustancias , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/metabolismo , Animales , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ratas , Receptores de Hormona Liberadora de Corticotropina/genética , Síndrome de Abstinencia a Sustancias/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Addict Biol ; 27(1): e13067, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075665

RESUMEN

Despite strong preclinical evidence for the ability of corticotropin releasing factor 1 (CRF1) antagonists to regulate alcohol consumption, clinical trials have not yet demonstrated therapeutic effects of these compounds in alcohol use disorder (AUD) patients. Several confounding factors may limit the translation of preclinical CRF1 research to patients, including reliance on experimenter-administered alcohol instead of voluntary consumption, a preponderance of evidence collected in male subjects only and an inability to assess the effects of alcohol on specific brain circuits. A population of particular interest is the CRF1-containing neurons of the central amygdala (CeA). CRF1 CeA neurons are sensitive to ethanol, but the effects of alcohol drinking on CRF signalling within this population are unknown. In the present study, we assessed the effects of voluntary alcohol drinking on inhibitory control of CRF1+ CeA neurons from male and female CRF1:GFP mice using ex vivo electrophysiology and determined the contributions of CRF1 signalling to inhibitory control and voluntary alcohol drinking. Chronic alcohol drinking produced neuroadaptations in CRF1+ neurons that increased the sensitivity of GABAA receptor-mediated sIPSCs to the acute effects of alcohol, CRF and the CRF1 antagonist R121919, but these adaptations were more pronounced in male versus female mice. The CRF1 antagonist CP-154,526 reduced voluntary alcohol drinking in both sexes and abolished sex differences in alcohol drinking. The lack of alcohol-induced adaptation in the female CRF1 system may be related to the elevated alcohol intake exhibited by female mice and could contribute to the ineffectiveness of CRF1 antagonists in female AUD patients.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Núcleo Amigdalino Central/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Hormona Liberadora de Corticotropina/metabolismo , Etanol/farmacología , Femenino , Masculino , Ratones , Pirimidinas , Pirroles , Receptores de GABA-A , Caracteres Sexuales , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico
11.
Neuropharmacology ; 205: 108912, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883134

RESUMEN

Alcohol is a commonly used drug that can produce alcohol use disorders (AUDs). Few individuals with AUDs receive treatment and treatment options are complicated by issues with effectiveness and compliance. Alcohol has been shown to differentially affect specific brain regions and an improved understanding of circuit-specific dysregulation caused by alcohol is warranted. Previous work has implicated both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) in alcohol-associated plasticity, however studies directly examining the impact of alcohol exposure on this circuit are lacking. The current study employed an optogenetic strategy to investigate the prelimbic mPFC to BLA circuit and changes in circuit activity following chronic intragastric ethanol exposure in male Sprague Dawley rats. We observed monosynaptic connections with light-evoked stimulation of mPFC terminals in the BLA with efficacy and short latency. We also found that mPFC-BLA projections are primarily glutamatergic under basal inhibitory control, with a lesser population of GABAergic projections. We examined optically-evoked glutamate currents in the BLA using repeated trains of stimulation that displayed accommodation, or a reduction in evoked current amplitude over repeated stimulations. We found that following chronic ethanol exposure mPFC-BLA glutamatergic connections were dysregulated such that there were decreases in overall function, notably in synaptic strength and accommodation, with no change in probability of evoked glutamate release. The lesser GABAergic component of the mPFC-BLA circuit was not altered by chronic ethanol exposure. Collectively these data indicate that mPFC-BLA circuitry is a significant target of alcohol-associated plasticity, which may contribute to pathological behavior associated with AUDs.


Asunto(s)
Alcoholismo/metabolismo , Complejo Nuclear Basolateral/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Plasticidad Neuronal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Optogenética , Ratas , Ratas Sprague-Dawley
12.
Neuropsychopharmacology ; 47(4): 847-856, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837077

RESUMEN

A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates. The central amygdala (CeA) displays elevated GABA release following chronic alcohol in rodents and in abstinent male macaques, highlighting this neuroadaptation as a conserved mechanism that may underlie excessive alcohol consumption. Here, we determined circulating interleukin-1ß (IL-1ß) levels, CeA transcriptomic changes, and the effects of IL-1ß and corticotropin releasing factor (CRF) signaling on CeA GABA transmission in male controls and abstinent drinkers. While no significant differences in peripheral IL-1ß or the CeA transcriptome were observed, pathway analysis identified several canonical immune-related pathways. We addressed this potential dysregulation of CeA immune signaling in abstient drinkers with an electrophysiological approach. We found that IL-1ß decreased CeA GABA release in controls while abstinent drinkers were less sensitive to IL-1ß's effects, suggesting adaptations in the neuromodulatory role of IL-1ß. In contrast, CRF enhanced CeA GABA release similarly in controls and abstinent drinkers, consistent with rodent studies. Notably, CeA CRF expression was inversely correlated with intoxication, suggesting that CRF levels during abstinence may predict future intoxication. Together, our findings highlight conserved and divergent actions of chronic alcohol on neuroimmune and stress signaling on CeA GABA transmission across rodents and macaques.


Asunto(s)
Abstinencia de Alcohol , Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Interleucina-1beta , Transmisión Sináptica , Animales , Núcleo Amigdalino Central/fisiopatología , Hormona Liberadora de Corticotropina/metabolismo , Potenciales Postsinápticos Inhibidores , Interleucina-1beta/metabolismo , Macaca mulatta , Masculino , Ácido gamma-Aminobutírico/metabolismo
13.
Neuroimage ; 243: 118541, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478824

RESUMEN

Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Animales , Mapeo Encefálico/métodos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador/métodos , Isoflurano , Masculino , Ratas , Reproducibilidad de los Resultados
14.
J Neurosci Res ; 99(11): 3047-3065, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34496069

RESUMEN

Plasticity in the dentate gyrus (DG) is strongly influenced by ethanol, and ethanol experience alters long-term memory consolidation dependent on the DG. However, it is unclear if DG plasticity plays a role in dysregulation of long-term memory consolidation during abstinence from chronic ethanol experience. Outbred male Wistar rats experienced 7 weeks of chronic intermittent ethanol vapor exposure (CIE). Seventy-two hours after CIE cessation, CIE and age-matched ethanol-naïve Air controls experienced auditory trace fear conditioning (TFC). Rats were tested for cue-mediated retrieval in the fear context either twenty-four hours (24 hr), ten days (10 days), or twenty-one days (21 days) later. CIE rats showed enhanced freezing behavior during TFC acquisition compared to Air rats. Air rats showed significant fear retrieval, and this behavior did not differ at the three time points. In CIE rats, fear retrieval increased over time during abstinence, indicating an incubation in fear responses. Enhanced retrieval at 21 days was associated with reduced structural and functional plasticity of ventral granule cell neurons (GCNs) and reduced expression of synaptic proteins important for neuronal plasticity. Systemic treatment with the drug Isoxazole-9 (Isx-9; small molecule that stimulates DG plasticity) during the last week and a half of CIE blocked altered acquisition and retrieval of fear memories in CIE rats during abstinence. Concurrently, Isx-9 modulated the structural and functional plasticity of ventral GCNs and the expression of synaptic proteins in the ventral DG. These findings identify that abstinence-induced disruption of fear memory consolidation occurs via altered plasticity within the ventral DG, and that Isx-9 prevented these effects.


Asunto(s)
Giro Dentado , Etanol , Animales , Etanol/farmacología , Miedo , Isoxazoles , Masculino , Ratas , Ratas Wistar , Tiofenos
15.
Neuropsychopharmacology ; 46(11): 1927-1936, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34035471

RESUMEN

Long-term alcohol use results in behavioral deficits including impaired working memory, elevated anxiety, and blunted inhibitory control that is associated with prefrontal cortical (PFC) dysfunction. Preclinical observations demonstrate multiple impairments in GABAergic neurotransmission onto deep-layer principal cells (PCs) in the prelimbic cortex that suggest dependence-related cortical dysfunction is the product of elevated excitability in these cells. Despite accumulating evidence showing alcohol-induced changes in interneuron signaling onto PCs differ between sexes, there is limited data explicitly evaluating sex-specific ethanol effects on excitatory signaling onto deep-layer PCs that may further contribute to deficits in PFC-dependent behaviors. To address this, we conducted electrophysiological and behavioral tests in both male and female Sprague-Dawley rats to evaluate the effects of chronic ethanol exposure. Among our observations, we report a marked enhancement in glutamatergic signaling onto deep-layer PCs in male, but not female, rats after alcohol exposure. This phenomenon was furthermore specific to a sub-class of PC, sub-cortically projecting Type-A cells, and coincided with enhanced anxiety-like behavior, but no observable deficit in working memory. In contrast, female rats displayed alcohol-induced facilitation in working memory performance with no change in expression of anxiety-like behavior. Together, these results suggest fundamental differences in alcohol effects on cell activity, cortical sub-circuits, and PFC-dependent behaviors across male and female rats.


Asunto(s)
Corteza Prefrontal , Células Piramidales , Animales , Etanol/toxicidad , Femenino , Interneuronas , Masculino , Ratas , Ratas Sprague-Dawley
16.
J Neurosci ; 40(49): 9372-9385, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139401

RESUMEN

Efficient neurotransmitter release at the presynaptic terminal requires docking of synaptic vesicles to the active zone membrane and formation of fusion-competent synaptic vesicles near voltage-gated Ca2+ channels. Rab3-interacting molecule (RIM) is a critical active zone organizer, as it recruits Ca2+ channels and activates synaptic vesicle docking and priming via Munc13-1. However, our knowledge about Munc13-independent contributions of RIM to active zone functions is limited. To identify the functions that are solely mediated by RIM, we used genetic manipulations to control RIM and Munc13-1 activity in cultured hippocampal neurons from mice of either sex and compared synaptic ultrastructure and neurotransmission. We found that RIM modulates synaptic vesicle localization in the proximity of the active zone membrane independent of Munc13-1. In another step, both RIM and Munc13 mediate synaptic vesicle docking and priming. In addition, while the activity of both RIM and Munc13-1 is required for Ca2+-evoked release, RIM uniquely controls neurotransmitter release efficiency. However, activity-dependent augmentation of synaptic vesicle pool size relies exclusively on the action of Munc13s. Based on our results, we extend previous findings and propose a refined model in which RIM and Munc13-1 act in overlapping and independent stages of synaptic vesicle localization and release.SIGNIFICANCE STATEMENT The presynaptic active zone is composed of scaffolding proteins that functionally interact to localize synaptic vesicles to release sites, ensuring neurotransmission. Our current knowledge of the presynaptic active zone function relies on structure-function analysis, which has provided detailed information on the network of interactions and the impact of active zone proteins. Yet, the hierarchical, redundant, or independent cooperation of each active zone protein to synapse functions is not fully understood. Rab3-interacting molecule and Munc13 are the two key functionally interacting active zone proteins. Here, we dissected the distinct actions of Rab3-interacting molecule and Munc13-1 from both ultrastructural and physiological aspects. Our findings provide a more detailed view of how these two presynaptic proteins orchestrate their functions to achieve synaptic transmission.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas del Tejido Nervioso/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neurotransmisores/metabolismo , Vesículas Sinápticas/ultraestructura
17.
Neuropharmacology ; 180: 108296, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950560

RESUMEN

The central amygdala (CeA) is a critical regulator of emotional behavior that has been implicated in psychiatric illnesses, including anxiety disorders and addiction. The CeA corticotropin releasing factor receptor 1 (CRF1) system has been implicated in alcohol use disorder (AUD) and mood disorders, and has been shown to regulate anxiety-like behavior and alcohol consumption in rodents. However, the effects of CRF signaling within the CRF receptor 1-containing (CRF1+) population of the CeA remain unclear, and the effects of ethanol and CRF1 manipulations in female rodents have not been assessed. Here, we characterized inhibitory control and CRF1 signaling in male and female CRF1-GFP reporter mice. Male and female CRF1+ CeA neurons exhibited similar baseline GABAergic signaling and excitability and were comparably sensitive to CRF-induced increases in presynaptic GABA release. CRF1 antagonism reduced GABA release onto CRF1-containing neurons comparably in both males and females. Acute ethanol application reduced GABA release onto CRF1+ neurons from males, but female CRF1+ neurons were insensitive to ethanol. Exogenous CRF increased the firing rate of CRF1-containing neurons to a greater extent in male cells versus female cells, and CRF1 antagonism reduced firing in females but not males. Together, these findings indicate a critical sex-specific role for the CRF system in regulating inhibitory control and excitability of CRF1-containing neurons in the central amygdala. Sex differences in sensitivity of CRF/CRF1 signaling provide useful context for the sex differences in psychiatric illness reported in human patients, particularly AUD.


Asunto(s)
Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Caracteres Sexuales , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/agonistas
18.
Neuropharmacology ; 170: 108045, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32217364

RESUMEN

The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Interacción Gen-Ambiente , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Caracteres Sexuales , Medio Social , Factores de Edad , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/psicología , Animales , Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Femenino , Humanos , Masculino , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología
19.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32041742

RESUMEN

The lateral amygdala (LA) serves as the point of entry for sensory information within the amygdala complex, a structure that plays a critical role in emotional processes and has been implicated in alcohol use disorders. Within the amygdala, the corticotropin-releasing factor (CRF) system has been shown to mediate some of the effects of both stress and ethanol, but the effects of ethanol on specific CRF1 receptor circuits in the amygdala have not been fully established. We used male CRF1:GFP reporter mice to characterize CRF1-expressing (CRF1+) and nonexpressing (CRF1-) LA neurons and investigate the effects of acute and chronic ethanol exposure on these populations. The CRF1+ population was found to be composed predominantly of glutamatergic projection neurons with a minority subpopulation of interneurons. CRF1+ neurons exhibited a tonic conductance that was insensitive to acute ethanol. CRF1- neurons did not display a basal tonic conductance, but the application of acute ethanol induced a δ GABAA receptor subunit-dependent tonic conductance and enhanced phasic GABA release onto these cells. Chronic ethanol increased CRF1+ neuronal excitability but did not significantly alter phasic or tonic GABA signaling in either CRF1+ or CRF1- cells. Chronic ethanol and withdrawal also did not alter basal extracellular GABA or glutamate transmitter levels in the LA/BLA and did not alter the sensitivity of GABA or glutamate to acute ethanol-induced increases in transmitter release. Together, these results provide the first characterization of the CRF1+ population of LA neurons and suggest mechanisms for differential acute ethanol sensitivity within this region.


Asunto(s)
Alcoholismo , Etanol , Amígdala del Cerebelo/metabolismo , Animales , Hormona Liberadora de Corticotropina/metabolismo , Etanol/farmacología , Masculino , Ratones , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Ácido gamma-Aminobutírico
20.
Neuropharmacology ; 162: 107805, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589884

RESUMEN

Chronic ethanol exposure results in numerous neurobiological adaptations that promote deficits in medial prefrontal cortical (mPFC) function associated with blunted inhibitory control and elevated anxiety during withdrawal. Studies exploring alcohol dependence-related changes in this region have largely investigated adaptations in glutamatergic signaling, with inhibitory neurotransmission remaining relatively understudied. To address this, we used biochemical and electrophysiological methods to evaluate the effects of ethanol on the activity of deep-layer prelimbic mPFC Fast-Spiking (FS) and Martinotti interneurons after chronic ethanol exposure in male and female rats. We report that chronic alcohol exposure significantly impairs FS neuron excitability in both males and females. Interestingly, we observed a marked sex difference in the baseline activity of Martinotti cells that furthermore displayed differential sex-specific responses to alcohol exposure. In addition, alcohol effects on Martinotti neuron excitability negatively correlated with hyperpolarization-activated currents mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels, indicative of a causal relationship. Analysis of HCN1 protein expression also revealed a substantial sex difference, although no effect of ethanol on HCN1 protein expression was observed. Taken together, these findings further elucidate the complex adaptations that occur in the mPFC after chronic ethanol exposure and reveal fundamental differences in interneuron activity between sexes. Furthermore, this disparity may reflect innate differences in intracortical microcircuit function between male and female rats, and offers a tenable circuit-level explanation for sex-dependent behavioral responses to alcohol.


Asunto(s)
Alcoholismo , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Interneuronas/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Excitabilidad Cortical/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores Sexuales , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA