Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(26): 10551-10558, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888386

RESUMEN

Drying oils such as linseed oil form a polymer network through a complex free-radical polymerization process. We have studied polymerization in this challenging class of polymers using a quartz crystal microbalance (QCM). The QCM is able to measure the evolution of polymer mass and mechanical properties as the oil transitions from a liquid-like to a solid-like state. Measurements using bulk materials and thin films provide information about the initial polymerization phase as well as the evolution of the mass and mechanical properties over the first two years of cure. The temperature-dependent response of the cured linseed oil films was also measured. These results were combined with previously published results obtained from traditional dynamic mechanical analysis to give a unified picture of the properties of these materials across a very broad temperature range.

2.
J Phys Chem C Nanomater Interfaces ; 127(38): 19269-19277, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37791101

RESUMEN

Pigments in oil paint are bound by a complex oil polymer network that is prone to water-related chemical degradation. We use cryo-Fourier-transform infrared spectroscopy and differential scanning calorimetry to study how water distributes inside zinc white oil paint. By measuring water freezing and melting transitions, we show that water-saturated zinc white oil paint contains both liquid-like clustered water and nonclustered water. A comparison of titanium white paint and nonpigmented model systems indicates that water clustering happens near the pigment-polymer interface. The cluster size was estimated in the nanometer range based on the ice melting and freezing temperatures and on the position of the O-D vibration band. As liquid-like water can play a crucial role in the dissolution and transport of ions and molecules, understanding the factors that favor this phenomenon is essential for establishing safe conditions for the conservation of painted works of art.

3.
Phys Chem Chem Phys ; 25(7): 5701-5709, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734512

RESUMEN

The crystallization of metal soaps in polymer matrices is a complex process that affects the stability of oil paintings, as well as the properties of commercial ionomer materials. In the context of conservation of paintings, it is crucial to investigate the influence of solvent exposure on such detrimental chemical processes. Using Fourier transform infrared spectroscopy and a polymer model system that contains metastable amorphous zinc soaps, it is shown that water induces zinc soap crystallization, while solvent swelling alone has no effect. In particular fast-diffusing polar organic solvents with water impurities are able to induce extensive crystallization, delivering high concentrations of water quickly deep into paint layers. Finally, it is demonstrated, both with the model system and real oil paint samples, that even with very short solvent exposure times, significant quantities of crystalline zinc soaps are formed. This strong effect of water impurities in common solvents gives reason to be cautious when conservation treatments are being considered for oil paints that contain zinc white or other water-sensitive chemicals.

4.
Angew Chem Int Ed Engl ; 62(16): e202216478, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36591906

RESUMEN

The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)2 , in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17th century recipes. Synchrotron radiation based micro-XRPD (SR-µ-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.

5.
Phys Chem Chem Phys ; 23(39): 22589-22600, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34591054

RESUMEN

The crystallization of metal soaps in oil paint is an important chemical phenomenon that affects the appearance and structural stability of many works of art. A deep understanding of the structural transitions that occur during crystallization and their kinetics will help to support conservation decisions that minimize future detrimental change to paintings. We have used a method based on attenuated total reflection Fourier transform infrared spectroscopy and detailed spectrum analysis to quantitatively monitor all relevant metal soap structures during crystallization in a linseed oil matrix with varying degrees of polymerization. It was found that zinc soap crystallization behaviour is strongly influenced by the properties of the oil matrix, slowing down drastically with increasing polymerization, forming crystalline polymorphs in varying ratios, and demonstrating two-stage kinetics. In contrast, lead soap crystallization was invariably fast, but the degree of disorder in the crystallized phases was increasing with matrix polymerization. Besides fundamental insight into the mechanisms of metal soap crystallization, the results lay foundations for improved risk assessment during conservation treatment of oil paintings.

6.
Catal Sci Technol ; 11(10): 3326-3332, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-34123363

RESUMEN

Monoalkyltin(iv) complexes are well-known catalysts for esterification reactions and polyester formation, yet the mode of operation of these Lewis acidic complexes is still unknown. Here, we report on mechanistic studies of n-butylstannoic acid in stoichiometric and catalytic reactions, analyzed by NMR, IR and MS techniques. While the chemistry of n-butyltin(iv) carboxylates is dominated by formation of multinuclear tin assemblies, we found that under catalytically relevant conditions only monomeric n-BuSn(OAc)3 and dimeric (n-BuSnOAc2OEt)2 are present. Density functional theory (DFT) calculations provide support for a mononuclear mechanism, where n-BuSn(OAc)3 and dimeric (n-BuSnOAc2OEt)2 are regarded as off-cycle species, and suggest that carbon-oxygen bond breaking is the rate-determining step.

7.
Appl Spectrosc ; 74(12): 1505-1514, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33035076

RESUMEN

The formation of crystalline zinc soaps (zinc salts of fatty acids) in oil paint layers is a common sign of paint degradation. In this study, we have used infrared spectroscopy to systematically identify differences in structure and composition of crystalline zinc soap phases, and report data analysis methods for structure attribution in challenging oil paint samples. Supported by reported crystal structures, it was possible to distinguish two distinct types of zinc soap geometry: a highly symmetrical packing for long-chain saturated soaps (type B) and an alternating packing for zinc soaps with short, unsaturated, or dicarboxylic chains (type A). These two types of packing can be identified by a single or split asymmetric COO stretch vibration band. With this new information, we studied the structure and composition of zinc soaps formed in a zinc white model paint and in a cross-section from the painting Equations in Space by Lawren Harris. Using non-negative matrix factorization, band integration and band position maps, it was possible to clearly identify zinc azelate in the model paint and map its spatial distribution. The same methods showed that the paint cross-section contained both types of zinc soap structure within the same paint layer, with the less symmetrical structure appearing only at the interface with the ground layer. The results give valuable information on the internal chemistry of oil paint layers, and the demonstrated methods can find widespread application for in-depth analysis of infrared microscopy data.

8.
Sci Rep ; 10(1): 10574, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601362

RESUMEN

The exposure of oil paintings to organic solvents for varnish removal or to water for the removal of surface dirt can affect the chemical and physical properties of oil paint in an undesired way. Solvents can temporarily plasticise and swell the polymerised oil paint binding medium, enhancing both the thermal mobility and mechanical displacement of pigments embedded in this film. The enhancement of these microscopic motions can affect both the chemical and physical stability of the object as a whole. In order to minimise solvent exposure during cleaning, an analytical method that can quantitatively measure the microscopic motions induced by solvent uptake, is required first. In this study, we use Fourier Transform Laser Speckle Imaging (FT-LSI) and a newly developed portable FT-LSI setup as highly resolved motion detection instruments. We employ FT-LSI to probe pigment motion, with high spatiotemporal resolution, as a proxy for the destabilising effects of cleaning solvents. In this way, we can study solvent diffusion and evaporation rates and the total solvent retention time. In addition, qualitative spatial information on the spreading and homogeneity of the applied solvent is obtained. We study mobility in paint films caused by air humidity, spreading of solvents as a result of several cleaning methods and the protective capabilities of varnish. Our results show that FT-LSI is a powerful technique for the study of solvent penetration during oil paint cleaning and has a high potential for future use in the conservation studio.

9.
Sci Adv ; 5(6): eaaw3592, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31245541

RESUMEN

The molecular structure around metal ions in polymer materials has puzzled researchers for decades. This question has acquired new relevance with the discovery that aged oil paint binders can adopt an ionomer structure when metal ions leached from pigments bind to carboxylate groups on the polymerized oil network. The characteristics of the metal-polymer structure are expected to have important consequences for the rate of oil paint degradation reactions such as metal soap formation and oil hydrolysis. Here, we use two-dimensional infrared (2D-IR) spectroscopy to demonstrate that zinc carboxylates formed in paint films containing zinc white pigment adopt either a coordination chain- or an oxo-type cluster structure. Moreover, it was found that the presence of water governs the relative concentration of these two types of zinc carboxylate coordination. The results pave the way for a molecular approach to paintings conservation and the application of 2D-IR spectroscopy to the study of polymer structure.

10.
RSC Adv ; 9(61): 35559-35564, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35528099

RESUMEN

Although the concentration of carboxylic acid (COOH) groups is crucial to understand oil paint chemistry, analytical challenges hindered COOH quantification in complex polymerised oil samples thus far. The concentration of COOH groups is important in understanding oil paint degradation because it drives the breakdown of reactive inorganic pigments to dissolve in the oil network and form metal carboxylates. The metal ions in such an ionomeric polymer network can exchange with saturated fatty acids to form crystalline metal soaps (metal complexes of saturated fatty acids), leading to serious problems in many paintings worldwide. We developed two methods based on ATR-FTIR spectroscopy to accurately estimate the COOH concentration in artificially aged oil paint models. Using tailored model systems composed of linseed oil, ZnO and inert filler pigments, these dried oil paints were found to contain one COOH group per triacylglycerol unit. Model systems based on a mixture of long chain alcohols showed that the calculated COOH concentration originates from side chain autoxidation at low relative humidity (RH). The influence of increasing RH and ZnO concentration on COOH formation was studied and high relative humidity conditions were shown to promote the formation of COOH groups. No significant ester hydrolysis was found under the conditions studied. Our results show the potential of quantitative analysis of oil paint model systems for aiding careful (re)evaluation of conservation strategies.

11.
Macromolecules ; 51(18): 7134-7144, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30270940

RESUMEN

In the restoration of paintings, solvent diffusion and swelling of polymeric oil paint binding media are important factors to consider. Common cleaning methods with organic solvents or aqueous solutions could lead to undesirable physicochemical changes in the paint in the long term, though the extent of this effect is not yet clear. We used tailored nonporous model systems for aged oil paint to measure paint swelling and solvent diffusion for a wide range of relevant solvents. Using dynamic mechanical analysis (DMA), the glass transition temperature of our model systems was found to be close to room temperature. Subsequently, with a custom sample cell and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, we were able to accurately track swelling and diffusion processes in the polymer films. To quantify the spectroscopic data, we developed a model that completely describes the solvent migration process, including significant film swelling and non-Fickian solvent diffusion. The relation between solvent properties, the diffusion coefficient, and the swelling capacity proved to be rather complex and could not be explained using a single solvent parameter. However, it was found that strongly swelling solvents generally diffuse faster than weakly swelling solvents and that pigmentation does not significantly influence solvent diffusion. These results contribute to a better understanding of transport phenomena in paintings and support the development of improved paint restoration strategies.

12.
Microsc Microanal ; 24(3): 318-322, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29860951

RESUMEN

Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

13.
Angew Chem Int Ed Engl ; 57(25): 7351-7354, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29411920

RESUMEN

The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films.

14.
Macromolecules ; 51(18): 7419, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186587

RESUMEN

[This corrects the article DOI: 10.1021/acs.macromol.8b00890.].

15.
Phys Chem Chem Phys ; 18(16): 10896-905, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27039879

RESUMEN

The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...